• Title/Summary/Keyword: clothing microclimate temperature

Search Result 113, Processing Time 0.022 seconds

Development of Thermoregulating Textile Materials with Microencapsulated Phase Change Materials(PCM) -Wearing comfort of the developed thermoregulating textile materials- (PCM 마이크로캡슐을 이용한 열조절 섬유소재 개발 -열조절 섬유소재의 착용효과-)

  • 신윤숙;정영옥;전향란;손경희;김성희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.6
    • /
    • pp.767-775
    • /
    • 2004
  • In order to evaluate physiological responses and comfort sensation of the developed thermoregulating textile material, polyester knit fabric was treated with phase change material (PCM) microcapsules by printing. Ten male subjects wearing an experimental best with and without PCMs were seated for 20 minutes, then exercised for 20 minutes, and then seated for 30 minutes in the chamber which was controlled under the temperatures of 20$\pm$1$^{\circ}C$, 50$\pm$5%R.H. The subject's skin temperature, microclimate inside garment and comfort sensation of two experimental bests were compared one another. As a result, the rectal temperature, skin temperature and mean skin temperature were similar in the two groups, and the subjects were not able to perceive the differences in comfort of the two experimental bests. However, the effect of PCM microcapsule could be seen from microclimate temperature and humidity. The microclimate temperature of the PCM garment at chest was significantly higher during exercise. The microclimate humidity of the PCM garment at chest was significantly lower during exercise and rest.

Evaluation of Clothing Comfort and Anti-atopy Properties by Human Wear Test -Focused to Inner Wear Natural Dyed with Bamboo Charcoal- (인체착용실험에 의한 쾌적성 및 항아토피 성능평가 - 대나무숯 천연염색의류를 중심으로 -)

  • Kim, Sung-Hee;Shin, Youn-Sook
    • Fashion & Textile Research Journal
    • /
    • v.12 no.1
    • /
    • pp.122-128
    • /
    • 2010
  • This study examined several dyeing properties, physiological responses and comfort sensation of cotton knit underwear dyed with bamboo charcoal. The cotton knit underwear dyed with bamboo charcoal and treated with chitosan showed 99.9% antibacterial property and improved deodorization, and colorfastness. Eight children with atopic dermatitis worn underwear dyed with bamboo charcoal during 4 months. Their parents reported fewer itches of children. Wearing cotton knit underwear dyed with bamboo charcoal and non-dyed with bamboo charcoal respectively, these eight children rested for 20 minutes, then exercised for 10 minutes, and then rested for 30 minutes in the room maintained $28{\pm}1^{\circ}C$ and $50{\pm}5%R.H.$ Children's rectal temperature, skin temperature and microclimate inside garment of two types of cotton knit underwear were compared. As a result, the rectal temperature and skin temperature were higher when children were wearing underwear dyed with bamboo charcoal than non-dyed underwear. The microclimate temperature and microclimate humidity at the back of children were lower when children with underwear dyed with bamboo charcoal exercised and recovered.

A Study on the Physiological Responses and the Microclimate in Girdle (Girdle 착용이 인체생리반응과 의복기후에 미치는 영향)

  • Kim Hyun Sik;Choi Jeong Wha
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.11 no.2 s.24
    • /
    • pp.57-67
    • /
    • 1987
  • The purpose of this study was to confirm the effects of girdle on the physiological responses and the microclimate in summer. The measuring points were rectal temperature, skin temperature, pulse rate and sweat volume as physiological responses and the inside clothing temperature, relative humidity as microclimate when the subjects wore girdle (girdle A; polyurethan+nylon, girdle B; polyurethan+cotton) for the period of rest and exercise in climate chamber. The enviromental conditions were at $25^{\circ}C$ ($65{\pm}5\%$ RH) and $30^{\circ}C$ ($75{\pm}5\%$ RR). The results were as followings. 1. Mean skin temperature increased in girdle during the exercise at $30^{\circ}C$. 2. The pulse rate decreased in girdle during the rest at $25^{\circ}C$. In the case of girdle A, it was remarkably decreased. Rectal temperature increased in girdle A and B during the exercise at $25^{\circ}C$. But the kinds of girdle didn't affect the pulse rate and rectal temperature. 3. The total sweat volume in girdle was larger than in control. 4. The difference between skin temperature and inside clothing temperature of abdomen had a tendency to increase at all experiment condition. 5. The relative humidity of inside ($RH_1$) and outside ($RH_2$) of girdle increased in girdle during the rest at $25^{\circ}C$ and $30^{\circ}C$. And the relative humidity of wearing girdle B was hig-her than girdle A during the rest at $25^{\circ}C$ and $30^{\circ}C$. The $RH_1$ after stepping at $30^{\circ}C$ was the highest in girdle A and the lowest in control. From this point of view, we concluded that physiological responses and the microclimate were affected by wearing girdle. And mean skin temperature and relative humidity of inside clothing were affected by the materials of girdle.

  • PDF

The Effects of Underwear on Clothing Microclimate, Physiological Responses, and Subjective Sensations During Summer (하절기 속옷의 착용이 인체의 생리적 반응과 주관적 감각에 미치는 영향)

  • Kim, Yang-Weon
    • Korean Journal of Human Ecology
    • /
    • v.7 no.1
    • /
    • pp.139-146
    • /
    • 1998
  • The actual clothing conditions of male collegian were surveyed to analyse clothing contents and the rate of wearing underwear. Then, clothing microclimate, physiological responses, and subjective sensations were investigated through wearing trials on human body in climatic chamber based on the results from the survey. The results were follows: 1. Male collegian wore T-shirts, jeans, and socks in summer, and total clothing weight per body surface area was $561g/m^2$. The number of clothes for upper body were 1 layer, but the number of clothes for lower body were 2 layers. Subjective sensations have no significant difference with wearing underwear. 2. Most physiological responses including temperature inside clothing, mean skin temperature, skin temperature of chest, abdomen, thigh, and lower leg, and sweat rate, were higher in with-underwear than in without-underwear. But pulse rates were not significantly different between with-and without-underwear.

  • PDF

Skin Temperature Responses of Hanbok When It Worn (한복 착용에 따른 피보온의 변화)

  • 송명견;신정화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.6
    • /
    • pp.763-770
    • /
    • 2002
  • The objective of the study was to investigate skin temperature responses of Hanbok when it was worn. Two healthy females(average 21 years, 155cm and 60kg were exposed to a climatic chamber(Room Temp. $21{\pm}1^{\circ}C,\;52{\pm}2%R.H.$, 0.15m/s). During the experiment, rectal temperature, skin temperature of 9 areas, clothing microclimate, subjective sensation were measured. Chima and Jogory to be made of silk nobang(SN) or Ramie were worn for summer. Polyester(P) Chima and Jogori(R) could be wort for spring and autumn. For winter, silk Chima, Jogori(S) and Durumagi(D) were commonly worn. Rectal temperature was high in order of naked(N), R, SN, P, S, D. However Mean skin temperature was reversely high in order of D, S, SN, R, P, naked. In naked, skin temperature was high in order of head, trunk upper extremity and lower extremity. But on wearing of Hanbok, it was the highest at the chest except head regardless of kinds of clothing ensembles. Skin temperature of upper arm was secondly highest on wearing the silk ensemble and the Durumagi ensemble, but skin temperature of buttock was secondly highest on wearing the silk nobang ensemble and the ramie ensemble. Skin temperature on wearing the silk ensemble was generally higher than those on other clothing ensembles. Local and mean skin temperatures on wearing the silk ensemble and the Durumagj ensemble were generally higher than on other clothing ensembles. Heat resistance of the fabric might have affected on the local skin temperature.

Assessment of Wear Comfort of Water-vapor-permeable (WVP) garments (투습방수의류의 착용쾌적성 평가)

  • Kang, In-Hyeng;Park, Hyo-Suk;Lee, Han-Sup
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.9
    • /
    • pp.928-939
    • /
    • 2012
  • This study evaluates wear comforts of water-vapor-permeable (WVP) garments through a measurement of various parameters such as skin and rectal temperatures, microclimate between skin and clothing, sweat rate, and subjective sensations (thermal, wet and comfort sensations) to correlate the physiological responses of the human body with its comfort feeling. Wear comfort during a specific exercise on a treadmill in a climatic chamber (temperature T = $20{\pm}0.5^{\circ}C$ and relative humidity H = $50{\pm}10%$) were studied using eight men wearing seven sportswear outfits (a long sleeve shirts and a long pants) made with seven different WVP fabrics. A comfort sensation was found to be highly correlated with skin T (p<.001), microclimate (T and H) between skin and clothing (p<.001) and sweat rate (p<.05). A regression model correlating comfort sensations and physiological responses obtained from wearer trials could be established: Y = 14.167 - 0.362 ${\times}$ X1 + 0.424 ${\times}$ X2 - 0.238 ${\times}$ X3 - 0.561 ${\times}$ X4 + 0.253 ${\times}$ X5 + 0.214 ${\times}$ X6 - 0.393 ${\times}$ X7 + 0.023 ${\times}$ X8 - 0.043 ${\times}$ X9. (Y = comfort sensation, X1 = forehead skin T, X2 = forearm skin T, X3 = hand skin T, X4 = thigh skin T, X5 = T of chest microclimate, X6 = T of thigh microclimate, X7 = chest sweat rate, X8 = H of back microclimate, X9 = H of thigh microclimate. The regression model obtained in this work can be used by manufacturers to objectively estimate the comfort sensation of sportswear before it is introduced to the consumer market. This study provides salient information to sportswear manufacturers and sportswear consumers.

The Clothing Microclimates and Subjective Sensation for Casual Hanbok as School Summer Uniform (생활한복형 하절교복의 의복기후와 주관적 감각)

  • Yoo, Joungja;Kweon, Sooae
    • Korean Journal of Human Ecology
    • /
    • v.21 no.4
    • /
    • pp.765-780
    • /
    • 2012
  • This study was investigated the clothing microclimate, subjective sensation for the improvement of traditional koran high school student uniform so called "Saenghwal Hanbok". For the purpose, casual hanbok school summer uniforms were made. They were made of 4 different textiles materials - P/R, P100, P/C, P/R/S for blouses, P/W, P100, P/R, P/W/F for skirts. Then their clothing microclimate, subjective sensation were tested at room temperature $25{\pm}1^{\circ}C$ and $50{\pm}10%$ R.H. Clothing Microclimates wearing on the blouses were good matched comfort temperature range. Subjective sensations wearing on the blouses were better than those of traditional koran clothes so called "Hanbok" and quite same for western style clothes. Thermal sensations were indicated some hot condition, and moisture sensations were indicated some wet condition but tactile sensations and comfortable sensations were agreeable. The temperatures of the forehead and the breast wearing on the skirts were indicated the same results with the cases of the blouses. Leg temperatures were some lower than the mean skin temperature, the other parts' temperatures were slightly higher than blouses but the mean skin temperatures were satisfied comfortable ranges. Subjective sensations wearing on the skirts were better than those of the other traditional clothes and even Western clothes. Thermal sensations and moisture sensations were resulted the same with the case of blouses. Currently, P/R material and P/W material seemed to be cool and respectively suitable for blouses and skirts in summer among the materials of modernized Korean traditional costumes and school uniforms, since those materials lowered skin temperature. But better, physiologically pleasant materials for summer clothes should be development in consideration of clothing microclimate and subjective sensation.

Prototype Intelligent Thermal Mountain Climbing Jacket Embedded with a Two Way Shape Memory Alloy (이방향 형상기업합금을 이용한 지능형 보온성 등산용 자켓의 프로토타입 개발)

  • Lee, Ji-Yeon;Shin, Yeon-Wook;Kim, Hee-Jung;Baek, Bum-Ki;Kim, Eun-Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.1
    • /
    • pp.92-101
    • /
    • 2010
  • This study reports on the development of intelligent clothing using a shape memory alloy (SMA) that forms a still air layer and provides thermal insulation depending on the environment temperature. SMA springs were prepared with Nitinol and have an original length of 6mm and a latent length of 20mm with a response temperature of $24.5^{\circ}C$. Hysteresis was evaluated at a temperature between $0^{\circ}C$ and $40^{\circ}C$. An experimental outdoor jacket that was attached with 30 springs was compared with a commercial jacket in terms of the microclimate temperature, humidity, and comfort properties by human subject tests in the microclimate chamber set at $5{\pm}0.5^{\circ}C$. The results showed that the microclimate temperature of SMA embedded clothing system from the wear trials was higher than the commercial ones during the rest period after exercise, especially on the skin side. In addition the thermal, humidity, and comfort sensations of SMA embedded clothing were better than the commercial ones.

Clothing Microclimate and Subjective Sensations by Wearing Long Johns in Mildly Cold Air (겨울철 실내 온도에서 내복 착용에 따른 의복 기후와 주관적 감각)

  • Kim Myung-Ju;Lee Joo-Young
    • Journal of the Korean Home Economics Association
    • /
    • v.42 no.10 s.200
    • /
    • pp.91-104
    • /
    • 2004
  • The purpose of this study was to examine the differences of clothing microclimates and the subjective sensations according to age, gender and clothing weight for $19^{\circ}C$ air temperature. This study was done to gain fundamental data related to saving heating energy and to improve health through wearing underwear (long johns) in lower indoor temperatures. The subjects were divided into four groups (6 young males, 5 young females, 6 old males, 6 old females), and our experiment consisted of three conditions; the first condition was wearing long underwear in $19^{\circ}C$ air (19CUW condition); the second condition was without wearing long underwear in $19^{\circ}C$ air (19C condition); and the third condition was without wearing underwear in $24^{\circ}C$ air (24C condition). The experiment showed that the clothing microclimate temperature and humidity was the lowest in the 19C condition and the highest in the 24C condition irrespective of age and gender. The clothing microclimate in the 19CUW condition was not significantly distinguishable from the other conditions. Clothing microclimate temperature and humidity when the subjects responded thermal comfort was $28\~34^{\circ}C$ and $15\~40\%$RH without any significant difference according to age and gender. For the thermal sensation, the 24C condition was regarded as the warmest environment by the four groups, and the next preference was the 19CUW condition (p<0.001). Young females and old males showed a tendency to feel colder than young males and old females. For the thermal sensation of hands and feet, the young groups felt the warmest in the 24C condition and the coolest in the 19 C condition (p<0.001). However, old males felt neutral for the foot thermal sensation without any significant difference between the three conditions. Old females felt neutral for both the hands and feet thermal sensations without any significant difference between the three conditions. Thermal preference was the highest in the 24C condition for the 4 groups. In the 19CUW condition, for the thermal preference, most young males and females responded 'No change'; on the other hand, mea of the old responded 'Warmer'(p<0.001). It was the 24C condition that the 4 subject groups felt the most thermally comfortable. In the 19CUW condition, over $80\%$ of responses of each group expressed satisfaction and in the 19C condition, over $80\%$ of responses of each group, except young females, expressed satisfaction. In conclusion, in view of the clothing microclimate and subjective sensations, the 24C condition was the condition that gave subjects the least cold stress and the best subjective preference. However, the 19C condition and the 19CUW condition was not such a cold stress as to give healthy subjects a thermal burden.

Thermophysiological Response of Human Body in Wearing Codling Vest (냉각조끼착용에 따른 인체의 온열생리학적 특성)

  • 권오경;김태규
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.148-154
    • /
    • 2000
  • To do this study, we produced cooling vest newly. Rectal temperature was ascended approximately from 37.2$^{\circ}C$ to 38.05$^{\circ}C$ in lab, but wearing cooling vest, the temperature was descended 0.2 while wearing developed product compare with existing product. Mean skin temperature which was showed distribution from 32.8∼36.5$^{\circ}C$, it was descended 1.0∼1.1$^{\circ}C$, while wearing cooling vest and comparing with existing product, wearing developed product was lower 0.5$^{\circ}C$, While wearing developed product, it was found that they had lower tendency than exiting product. Specifically in case of temperature within clothing(chest) 0.2∼2.0$^{\circ}C$ in case of humidity within clothing 2∼8% RH. Facts from above we confirmed that clothing microclimate had been improved and space was happened between body and garment in order to control. In subjective sensation, existing product made negative response during experiment period from participants, but developed product was nearing to comfortable area.

  • PDF