• 제목/요약/키워드: closing stock

검색결과 56건 처리시간 0.025초

The Relationships between Abnormal Return, Trading Volume Activity and Trading Frequency Activity during the COVID-19 in Indonesia

  • SAPUTRA G, Enrico Fernanda;PULUNGAN, Nur Aisyah Febrianti;SUBIYANTO, Bambang
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권2호
    • /
    • pp.737-745
    • /
    • 2021
  • This study aims to determine whether there are differences in the average abnormal return, trading volume activity, and trading frequency activity in pharmaceutical stocks before and after the announcement of the first case of the coronavirus (COVID-19) in Indonesia. The sample was selected using a purposive sampling method and collected as many as nine pharmaceutical companies listed on the Indonesia Stock Exchange during 2019-2020. The data used in this study were secondary data in the form of daily data on stock closing prices, Composite Stock Price Index (IHSG), stock volume trading, number of shares outstanding, and stock trading frequency. This study was an event study with an observation period of 14 days, namely seven days before and seven days after the announcement of the coronavirus's first positive case in Indonesia. Hypothesis testing employed the paired sample t-test method. Based on the results, it was found that there was no difference in the average abnormal return of pharmaceutical stocks before and after the announcement of the first case of COVID-19. However, there was a difference in the average trading volume activity and the average trading frequency activity in pharmaceutical stocks before and after the announcement of the first case of COVID-19.

미국, 일본, 인도 증권시장 통합에 관한 연구 - 정보전달 메카니즘을 중심으로 - (A Study on USA, Japan and India Stock Market Integration - Focused on Transmission Mechanism -)

  • 이동욱
    • 국제지역연구
    • /
    • 제13권2호
    • /
    • pp.255-276
    • /
    • 2009
  • 본 연구는 미국, 일본 및 인도 증권시장에서의 수익률 및 변동성 간의 동태적인 상호작용에 관한 실증분석을 실시하였다. 이를 위하여 VAR모형에 기초를 둔 Granger 인과관계 분석 및 분산분해 분석을 실시하였으며 주요 실증분석 결과는 다음과 같다. 첫째, Granger인과관계 분석 결과 미국, 일본 및 인도 증권시장 사이에는 피드백적인 영향력을 미치고 있는 것으로 나타났으나, 미국 증시의 일본 및 인도 증시에 대한 영향력이 지배적인 것으로 나타났다. 둘째, 분산분해 분석 결과 인도 증시는 일본 보다 미국 증시로부터 상대적으로 더 많은 영향을 받는 것으로 나타났다. 각 증권시장이 해외증시로부터 받은 영향력의 크기는 일본 35%, 미국 16%, 인도 13%로 나타남에 따라 일본 증시의 해외변수에 대한 의존성이 매우 높은 것으로 나타났다. 이는 인도 증시가 인도 정부의 경제개방 및 자본 자유화 등으로 국제 증권시장과 점진적으로 통합화되어가고 있는 증거를 제시해 주고 있다. 또한 동 실증분석 결과는 국제 투자자들의 포트폴리오 관리 및 투자전략 수립, 위험관리전략 수립 등에 다소나마 도움을 줄 수 있을 것으로 보여 진다.

A study on Deep Learning-based Stock Price Prediction using News Sentiment Analysis

  • Kang, Doo-Won;Yoo, So-Yeop;Lee, Ha-Young;Jeong, Ok-Ran
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권8호
    • /
    • pp.31-39
    • /
    • 2022
  • 주가는 거래량, 종가 등과 같은 숫자 기반의 내부적인 요인뿐만 아니라 법, 유행 등 여러 외부요인에 의해 영향을 받는다. 수많은 요인이 주가에 영향을 미치기 때문에 단편적인 주식 데이터만을 이용한 정확한 주가 예측은 매우 어려운 일이다. 특히 기업의 가치는 실제 주식을 거래하는 사람들의 인식에 영향을 많이 받기 때문에 특정 기업에 대한 감성 정보가 중요한 요인으로 여겨진다. 본 논문에서는 시간적 특성을 고려한 뉴스 데이터의 감성 분석을 이용한 딥러닝 기반 주가 예측 모델을 제안하고자 한다. 주식과 뉴스 데이터, 서로 다른 특성을 가진 2개의 이종 데이터를 시간 크기에 따라 통합하여 모델의 입력으로 사용하며, 시간 크기와 감성 지표가 주가 예측에 미치는 영향에 대해 최종적으로 비교 및 분석한다. 또한 우리는 기존 모델과의 비교 실험을 통해 제안 모델의 정확성이 개선되었음을 검증한다.

A Study on Unfolding Asymmetric Volatility: A Case Study of National Stock Exchange in India

  • SAMINENI, Ravi Kumar;PUPPALA, Raja Babu;KULAPATHI, Syamsundar;MADAPATHI, Shiva Kumar
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권4호
    • /
    • pp.857-861
    • /
    • 2021
  • The study aims to find the asymmetric effect in National Stock Exchange in which the Nifty50 is considered as proxy for NSE. A return can be stated as the change in value of a security over a certain time period. Volatility is the rate of change in security value. It is an arithmetical assessment of the dispersion of yields of security prices. Stock prices are extremely unpredictable and make the investment in equities risky. Predicting volatility and modeling are the most profuse areas to explore. The current study describes the association between two variables, namely, stock yields and volatility in equity market in India. The volatility is measured by employing asymmetric GARCH technique, i.e., the EGARCH (1,1) tool, which was used in building the study. The closing prices of Nifty on day-to-day basis were used for analysis from the period 2011 to 2020 with 2,478 observations in the study. The model arrests the lopsided volatility during the mentioned period. The outcome of asymmetric GARCH model revealed the subsistence of leverage effect in the index and confirms the impact of conditional variance as well. Furthermore, the EGARCH technique was evidenced to be apt in seizure of unsymmetrical volatility.

Apache Spark를 활용한 실시간 주가 예측 (Real-Time Stock Price Prediction using Apache Spark)

  • 신동진;황승연;김정준
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권4호
    • /
    • pp.79-84
    • /
    • 2023
  • 최근 분산 및 병렬 처리 기술 중 빠른 처리 속도를 제공하는 Apache Spark는 실시간 기능 및 머신러닝 기능을 제공하고 있다. 이러한 기능에 대한 공식 문서 가이드가 제공되고 있지만, 기능들을 융합하여 실시간으로 특정 값을 예측하는 방안은 제공되고 있지 않다. 따라서 본 논문에서는 이러한 기능들을 융합하여 실시간으로 데이터의 값을 예측할 수 있는 연구를 진행했다. 전체적인 구성은 Python 프로그래밍 언어에서 제공하는 주가 데이터를 다운로드하여 수집한다. 그리고 머신러닝 기능을 통해 회귀분석의 모델을 생성하고, 실시간 스트리밍 기능을 머신러닝 기능과 융합하여 실시간으로 주가 데이터 중 조정종가를 예측한다.

심층 신경회로망 모델을 이용한 일별 주가 예측 (Daily Stock Price Forecasting Using Deep Neural Network Model)

  • 황희수
    • 한국융합학회논문지
    • /
    • 제9권6호
    • /
    • pp.39-44
    • /
    • 2018
  • 심층 신경회로망은 적합한 수학적 모델에 대한 어떠한 가정 없이 데이터로부터 유용한 정보를 추출해서 예측에 필요한 입출력 관계를 정의할 수 있기 때문에 최근 시계열 예측 분야에서 주목 받고 있다. 본 논문에서는 주가의 일별 종가를 예측하기 위한 심층 신경회로망 모델을 제안한다. 제안된 심층 신경회로망은 예측 정밀도를 높이기 위해 단일 층의 오토인코더와 4층의 신경회로망이 결합된 구조를 갖는다. 오토인코더 층은 주가 예측에 필요한 최적의 입력 특징을 추출하고 4층의 신경회로망은 추출된 특징을 사용해 주가 예측에 필요한 동특성을 반영하여 주가를 출력한다. 제안된 심층 신경회로망의 학습은 층별로 단계적으로 이뤄지며 최종 단계에서 전체 심층 신경회로망에 대해 한 번 더 학습이 실행된다. 본 논문에 제안된 방법으로 KOrea composite Stock Price Index (KOSPI) 일별 종가를 예측하는 심층 신경회로망을 구현하고 기존 방법과 예측 정확도를 비교, 평가한다.

Measuring COVID-19 Effects on World and National Stock Market Returns

  • KHANTHAVIT, Anya
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권2호
    • /
    • pp.1-13
    • /
    • 2021
  • Previous studies have found the significant adverse effects of coronavirus disease 2019 (COVID-19) on stock returns and volatility. The effects varied with the confirmed cases and deaths. However, the extent of the effects have never been measured exactly. This study proposes a measurement model for the COVID-19 effects. In the proposed model, stock returns in the COVID-19 period are weighted averages of pre-COVID-19 normal returns and COVID-19-induced returns. The effects are measured by the contributing weights of the COVID-19-induced returns. Kalman filtering is used to estimate the model for the world and Chinese markets, in combination with 10 markets - five most affected countries (United States, India, Brazil, Russia, and France) and five best recovering countries (Hong Kong, Australia, Singapore, Thailand, and South Korea). The sample returns are daily, obtained from the closing Morgan Stanley global investable market indexes. The full period is from September 24, 2018, to October 30, 2020, whereas the COVID-19 period is from November 18, 2019, to October 30, 2020. The contributing weights are significant and close to 100% for all markets. The COVID-19-induced returns replace the pre-COVID-19 normal returns; they are negatively auto-correlated and highly volatile. The COVID-19-induced returns are new normal returns in the COVID-19 period.

Optimal Portfolio Models for an Inefficient Market

  • GINTING, Josep;GINTING, Neshia Wilhelmina;PUTRI, Leonita;NIDAR, Sulaeman Rahman
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권2호
    • /
    • pp.57-64
    • /
    • 2021
  • This research attempts to formulate a new mean-risk model to replace the Markowitz mean-variance model by altering the risk measurement using ARCH variance instead of the original variance. In building the portfolio, samples used are closing prices of Indonesia Composite Stock Index and Indonesia Composite Bonds Index from 2013 to 2018. This study is a qualitative study using secondary data from the Indonesia Stock Exchange and Indonesia Bonds Pricing Agency. This research found that Markowitz's model is still superior when utilized in daily data, while the mean-ARCH model is appropriate with wider gap data like monthly observation. The Historical return has also proven to be more appropriate as a benchmark in selecting an optimal portfolio rather than a risk-free rate in an inefficient market. Therefore Mean-ARCH is more appropriate when utilized under data that have a wider gap between the period. The research findings show that the portfolio combination produced is inefficient due to the market inefficiency indicated by the meager return of the stock, while bears notable standard deviation. Therefore, the researcher of this study proposed to replace the risk-free rate as a benchmark with the historical return. The Historical return proved to be more realistic than the risk-free rate in inefficient market conditions.

해외지수와 투자자별 매매 동향에 따른 딥러닝 기반 주가 등락 예측 (Deep Learning-Based Stock Fluctuation Prediction According to Overseas Indices and Trading Trend by Investors)

  • 김태승;이수원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권9호
    • /
    • pp.367-374
    • /
    • 2021
  • 주가 예측은 경제, 통계, 컴퓨터 공학 등 여러 분야에서 연구되는 주제이며, 특히 최근에는 기본적 지표나 기술적 지표 등 다양한 지표로부터 인공지능 모델을 학습하여 주가의 변동을 예측하는 연구들이 활발해 지고 있다. 본 연구에서는 S&P500 등의 해외지수, 과거 KOSPI 지수, 그리고 KOSPI 투자자별 매매 동향으로부터 KOSPI의 등락을 예측하는 딥러닝 모델을 제안한다. 제안 모델은 주가 등락 예측을 위하여 비지도 학습 방법인 적층 오토인코더를 이용하여 잠재변수를 추출하고, 추출된 잠재변수로부터 시계열 데이터 학습에 적합한 LSTM 모델로 학습하여 당일 시가 대비 종가의 등락을 예측하며, 예측된 값을 기반으로 매수 또는 매도를 결정한다. 본 연구에서 제안하는 모델과 비교 모델들의 수익률 및 예측 정확도를 비교한 결과 제안 모델이 비교 모델들 보다 우수한 성능을 보였다.

외국인 거래행태의 비기대변동성은 주식수익률의 변동성에 영향을 주는가 (The Unexpected Volatility of Foreigners' Trading Behavior Effects on the Korean Stock Market Volatility)

  • 변영태
    • 경영과정보연구
    • /
    • 제31권4호
    • /
    • pp.593-609
    • /
    • 2012
  • 본 연구는 우리나라 주식시장을 대상으로 2004년 1월 2일부터 2012년 8월 31일까지 일별자료를 이용하여 외국인투자자 거래행태의 대용치인 순매수강도의 비기대변동성이 KOSPI 일별종가수익률, 밤수익률 그리고 낮수익률의 변동성에 대해 정보이전효과가 존재하는 지에 대해 금융위기 전 후로 구분하여 분석하였다. 분석결과에 의하면 전체 분석기간 및 금융위기 전 후 하위기간 동안 전일(t-1) 및 당일(t) 외국인투자자 순매수강도의 비기대변동성이 KOSPI 일별종가수익률 변동성에 대해 각각 음(-)과 양(+)의 정보이전효과가 있는 것으로 나타났다. 여기서 음(-)의 정보이전효과는 전일 외국인투자자 순매수강도의 비기대변동성이 다음날 주식수익률의 변동성을 감소시키는 역할을 하고 있음을 의미하고 양(+)의 정보이전효과는 당일 외국인투자자 순매수강도의 비기대변동성이 당일 주식시장의 변동성 크기를 증가시킨다는 것을 의미한다. 한편, 전일 외국인투자자 순매수강도의 비기대변동성은 밤수익률의 변동성에 대해 정보이전 효과가 없는 것으로 나타났다. 마지막으로 낮수익률의 변동성에 대한 외국인투자자 비기대변동성의 정보이전 효과는 전체기간과 동일한 결과를 보였다.

  • PDF