• 제목/요약/키워드: closing business

검색결과 78건 처리시간 0.021초

프로젝트 단계별 리스크 요인들의 우선순위 분석 : ICT(정보통신기술)산업 분야의 신제품 개발 프로젝트를 중심으로 (Priority Analysis of Project Stage-wise Risk Factors : Focusing on New Product Development Projects in ICT Industry)

  • 장희석;최성용;이민호
    • 산업경영시스템학회지
    • /
    • 제41권3호
    • /
    • pp.72-82
    • /
    • 2018
  • In this paper, we identify risk factors that are likely to occur during the lifecycle of a new product development (NPD) project from the literatures, and identify the three objectives or three constraints that will ultimately be achieved for project success in the ICT industry : performance (scope/quality), schedule (time), and cost. Firstly, we interviewed the project experts to classify the risk factors according that the final project objectives are changeable based on scope/quality, time and cost budget constraints. Secondly, the survey for pairwise comparisons between the risk factors was asked to the project managers and members who had ever actually participated in the NPD projects of ICT industry to determine the priority ranks on relative importance using AHP (Analytic Hierarchy Process). The risk factors negatively affecting the goals of projects were analyzed by using the AHP respectively in four project stages during the life cycle of the project. The comparison of risk factors within each stage is a different approach unlike the literatures which have covered project's overall risk assessment. There is an advantage that risk management can be effectively performed with priorities according to each stage from the start to the end of the project. In other words, it is necessary to identify what risk factors will occur in each stage, and to have ideas at each stage with the priorities so that they can be mitigated and eliminated before actual occurrence. As a result, risks on scope & quality changes were found to be the most important considerations for initiative stage of NPD projects in the ICT industry, whereas in the final stage, risks on schedule (time) changes were the most important priorities. Among the ICT industry product categories, 'communication and broadcasting devices' and 'IT and communication based devices' generally have a high priority in terms of risks on scope & quality changes when initiating the project. At the closing stage of the project, however, considering that schedule (time) changeable risk is getting higher, these products tend to target at B2B market rather than B2C because the new products must be delivered and launched in time as customer firm required.

점프발생 강도 및 거래시간에 따른 변동성지수의 KOSPI200 일중 점프 예측력에 관한 연구 (A Study of Predictability of VKOSPI on the KOSPI200 Intraday Jumps using different Jump Size and Trading Time)

  • 정대성
    • 경영과정보연구
    • /
    • 제35권1호
    • /
    • pp.273-286
    • /
    • 2016
  • 본 연구는 일중 KOSPI200 시장이 급변하는 시점을 기준으로 변동성지수의 KOSPI200점프를 예측력을 분석하였다. 본 연구의 주요 실증결과는 다음과 같다. 첫째, 변동성지수는 음의 KOSPI200점프에 대한 예측력을 가지는 것으로 나타났다. 변동성지수는 음의 점프 발생 전 정보의 유용성이 양의 점프 발생 시보다 유용한 것으로 나타났다. 둘째, 점프의 크기에 따른 변동성지수의 예측력은 강한 점프 발생보다는 약한 음의 점프에 대해서 높은 것으로 나타났다. 셋째, 변동성지수는 점프 발생 이후의 KOSPI200 수익률의 지속성에 대해서도 정보를 가지는 것으로 나타났다. 최소 6분에서 최대 8분까지 점프시점의 변동성지수에 따라서 점프 발생 후의 KOSPI200 수익률이 변화하는 움직임을 잘 설명해주었다. 넷째, 점프 방향에 따라서 음의 점프에 대해서 변동성지수가 증가하면 증가할수록, 향후 KOSPI200은 지속적으로 하락하게 되고, 양의 점프에 대해서는 변동성지수가 증가하면 증가할수록, KOSPI200은 상승하는 패턴을 보인다. 본 연구의 결과는 점프 예측뿐만 아니라 파생상품의 가격결정, ELW ELS 등 파생결합상품의 변동성위험 헤지 그리고 변동성거래를 이용한 포트폴리오 투자전략 수립 등에 기여할 것으로 기대되어진다.

  • PDF

코로나-19 이후 IoT 관련 기업의 회계정보와 주가에 관한 연구 (A Study on Accounting Information and Stock Price of IoT-related Companies after COVID-19)

  • 이상호;조광문
    • 사물인터넷융복합논문지
    • /
    • 제8권1호
    • /
    • pp.1-10
    • /
    • 2022
  • 본 연구는 IoT 관련 산업이 재무건전성을 확보하고, 코로나-19 종식 이후에 세계시장을 선점할 수 있는 기반을 마련하는데 목적이 있다. 이러한 연구를 통하여 IoT 관련 기업의 계량적 경영실태를 점검하였다. 또한, 주가변동과 관리종목 지정에 따른 재무비율의 관련성을 규명함으로써 기업의 부실에 선제적으로 대비하고자 하였다. 연구는 2019년부터 2020년까지 유가증권 시장에서 코스피와 코스닥에 상장되어 있는 502개의 기업으로 선정하였다. 통계분석 방법은 다중회귀분석, 차이분석, 로지스틱 회귀분석 등을 실시하였다. 연구 결과는 다음과 같다. 첫째, 코로나-19 이전과 이후에 따라 IoT 기업의 회계정보가 주가에 반영되는 영향력은 다르게 존재한다는 것을 알 수 있었다. 둘째, 코로나 이전과 이후에 따른 IoT 기업의 기말주가에서 차이가 있는 것으로 나타났다. 셋째, 코로나-19 이후에 주가변동에 따른 재무비율은 다르게 존재한다는 것을 알 수 있었다. 넷째, 코로나-19 이후에 관리종목 지정에 따른 재무비율은 다르게 존재한다는 것을 알 수 있었다. 이러한 연구결과를 통하여 IoT 기업의 재무건전성을 확보하고, 코로나-19 종식 이후에 세계시장으로 도약할 수 있는 기반을 마련하기 위한 몇 가지 제언을 하였다. 이러한 연구의 결과를 통하여 IoT 기업의 성장을 유도하고, 변화하는 금융시장에서 재무건전성을 담보할 수 있는 미래시대의 데카콘 기업으로 성장하는데 기여하길 기대한다.

금융거래 효과가 종료된 고객의 개인신용정보 파기 대상 범위 선정에 관한 연구 (A study on the selection of the target scope for destruction of personal credit information of customers whose financial transaction effect has ended)

  • 백송이;임영빈;이창길;전삼현
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.163-169
    • /
    • 2022
  • 신용정보법에 따라 신용정보 주체의 관계별 고객 정보 보호를 위해 금융거래 효과가 끝난 기간에 따라 2단계로 나눠 파기 및 분리보관하고 있다. 하지만, 금융거래 효과가 종료된 고객의 개인신용정보 파기는 금융 상품 및 거래의 성격에 따라 거래가 종료되었다고 일괄적으로 파기할 수 없는 것이 한계이다. 이를 위해 IT 업무 담당자는 사전에 거래 유형별 업무 연관관계를 조사하여 파기 대상과 순서에 맞게 전산 프로그램을 개발하고 있다. 이 과정에서 테이블 간의 상위 연관관계 식별이 불명확한 경우, IT 업무 담당자의 주관적 판단에 의존되므로 개인신용정보가 파기되지 못하거나 파기하지 말아야 하는 정보까지 파기되는 컴플라이언스 이슈가 발생한다. 따라서, 본 논문에서는 전산 프로그램에서 실행하는 SQL을 기반으로 참조하는 테이블을 식별하고, 테이블의 기본키 정보로 테이블 간의 상위 연관관계 분석하고, 시각화하여 객관적으로 파기 대상 범위를 선정하기 위한 모델과 알고리즘을 제시하고 구현하였다.

집중형센터를 가진 역물류네트워크 평가 : 혼합형 유전알고리즘 접근법 (Evaluating Reverse Logistics Networks with Centralized Centers : Hybrid Genetic Algorithm Approach)

  • 윤영수
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.55-79
    • /
    • 2013
  • 본 연구에서는 집중형 센터를 가진 역물류네트워크(Reverse logistics network with centralized centers : RLNCC)를 효율적을 해결하기 위한 혼합형 유전알고리즘(Hybrid genetic algorithm : HGA) 접근법을 제안한다. 제안된 HGA에서는 유전알고리즘(Genetic algorithm : GA)이 주요한 알고리즘으로 사용되며, GA 실행을 위해 0 혹은 1의 값을 가질 수 있는 새로운 비트스트링 표현구조(Bit-string representation scheme), Gen and Chang(1997)이 제안한 확장샘플링공간에서의 우수해 선택전략(Elitist strategy in enlarged sampling space) 2점 교차변이 연산자(Two-point crossover operator), 랜덤 돌연변이 연산자(Random mutation operator)가 사용된다. 또한 HGA에서는 혼합형 개념 적용을 위해 Michalewicz(1994)가 제안한 반복적언덕오르기법(Iterative hill climbing method : IHCM)이 사용된다. IHCM은 지역적 탐색기법(Local search technique) 중의 하나로서 GA탐색과정에 의해 수렴된 탐색공간에 대해 정밀하게 탐색을 실시한다. RLNCC는 역물류 네트워크에서 수집센터(Collection center), 재제조센터(Remanufacturing center), 재분배센터(Redistribution center), 2차 시장(Secondary market)으로 구성되며, 이들 각 센터 및 2차 시장들 중에서 하나의 센터 및 2차 시장만 개설되는 형태를 가지고 있다. 이러한 형태의 RLNCC는 혼합정수계획법(Mixed integer programming : MIP)모델로 표현되며, MIP 모델은 수송비용, 고정비용, 제품처리비용의 총합을 최소화하는 목적함수를 가지고 있다. 수송비용은 각 센터와 2차 시장 간에 제품수송에서 발생하는 비용을 의미하며, 고정비용은 각 센터 및 2차 시장의 개설여부에 따라 결정된다. 예를 들어 만일 세 개의 수집센터(수집센터 1, 2, 3의 개설비용이 각각 10.5, 12.1, 8.9)가 고려되고, 이 중에서 수집센터 1이 개설되고, 나머지 수집센터 2, 3은 개설되지 않을 경우, 전체고정비용은 10.5가 된다. 제품처리비용은 고객으로부터 회수된 제품을 각 센터 및 2차 시장에서 처리할 경우에 발생되는 비용을 의미한다. 수치실험에서는 본 연구에서 제안된 HGA접근법과 Yun(2013)의 연구에서 제안한 GA접근법이 다양한 수행도 평가 척도에 의해 서로 비교, 분석된다. Yun(2013)이 제안한 GA는 HGA에서 사용되는 IHCM과 같은 지역적탐색기법을 가지지 않는 접근법이다. 이들 두 접근법에서 동일한 조건의 실험을 위해 총세대수 : 10,000, 집단의 크기 : 20, 교차변이 확률 : 0.5, 돌연변이 확률 : 0.1, IHCM을 위한 탐색범위 : 2.0이 사용되며, 탐색의 랜덤성을 제거하기 위해 총 20번의 반복실행이 이루어 졌다. 사례로 제시된 두 가지 형태의 RLNCC에 대해 GA와 HGA가 각각 실행되었으며, 그 실험결과는 본 연구에서 제안된 HGA가 기존의 접근법인 GA보다 더 우수하다는 것이 증명되었다. 다만 본 연구에서는 비교적 규모가 작은 RLNCC만을 고려하였기에 추후 연구에서는 보다 규모가 큰 RLNCC에 대해 비교분석이 이루어 져야 할 것이다.

뉴스와 주가 : 빅데이터 감성분석을 통한 지능형 투자의사결정모형 (Stock-Index Invest Model Using News Big Data Opinion Mining)

  • 김유신;김남규;정승렬
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.143-156
    • /
    • 2012
  • 누구나 뉴스와 주가 사이에는 밀접한 관계를 있을 것이라 생각한다. 그래서 뉴스를 통해 투자기회를 찾고, 투자이익을 얻을 수 있을 것으로 기대한다. 그렇지만 너무나 많은 뉴스들이 실시간으로 생성 전파되며, 정작 어떤 뉴스가 중요한지, 뉴스가 주가에 미치는 영향은 얼마나 되는지를 알아내기는 쉽지 않다. 본 연구는 이러한 뉴스들을 수집 분석하여 주가와 어떠한 관련이 있는지 분석하였다. 뉴스는 그 속성상 특정한 양식을 갖지 않는 비정형 텍스트로 구성되어있다. 이러한 뉴스 컨텐츠를 분석하기 위해 오피니언 마이닝이라는 빅데이터 감성분석 기법을 적용하였고, 이를 통해 주가지수의 등락을 예측하는 지능형 투자의사결정 모형을 제시하였다. 그리고, 모형의 유효성을 검증하기 위하여 마이닝 결과와 주가지수 등락 간의 관계를 통계 분석하였다. 그 결과 뉴스 컨텐츠의 감성분석 결과값과 주가지수 등락과는 유의한 관계를 가지고 있었으며, 좀 더 세부적으로는 주식시장 개장 전 뉴스들과 주가지수의 등락과의 관계 또한 통계적으로 유의하여, 뉴스의 감성분석 결과를 이용해 주가지수의 변동성 예측이 가능할 것으로 판단되었다. 이렇게 도출된 투자의사결정 모형은 여러 유형의 뉴스 중에서 시황 전망 해외 뉴스가 주가지수 변동을 가장 잘 예측하는 것으로 나타났고 로지스틱 회귀분석결과 분류정확도는 주가하락 시 70.0%, 주가상승 시 78.8%이며 전체평균은 74.6%로 나타났다.

그룹 몰입도 판단을 위한 움직임 동기화 연구 (A Study of the Reactive Movement Synchronization for Analysis of Group Flow)

  • 류준모;박승보;김재경
    • 지능정보연구
    • /
    • 제19권1호
    • /
    • pp.79-94
    • /
    • 2013
  • 최근 문화 예술 분야를 활용하여 고부가가치를 창출하며 지속적으로 발전하는 공연예술 시장 환경 속에서 공연 기획자들이나 투자자들은 공연에서 성공을 하기 위한 객관적인 지표를 원한다. 성공적인 공연을 위해서는 관람객들에게 편의를 제공하여 만족도를 높여 주어야 하며, 따라서 재미와 감동, 가치를 높이는 방안도 모색해야 한다. 기존의 만족도 확인 방법으로는 공연기간, 설문조사, 입소문 등 주관적인 평가가 대부분이다. 이것들은 관람객들의 만족도에 대한 평가 기준이 될 수 는 없다. 최근에는 공연에서 관람객의 몰입 정도가 공연의 주요 성공 요인으로 평가되기 시작했다. 공연에 대한 몰입도가 높으면 만족도도 높아진다는 연구 결과도 있다. 그래서 공연에 대한 관람객의 몰입을 실시간으로 확인하는 지표를 개발하는 것은 관람객들의 만족도를 평가하는데 유용하게 사용될 수 잇다. 기존의 몰입도 추출 연구는 대부분 1인을 대상으로 한 연구들이며 전체 관람객들의 몰입도는 개별 몰입도를 통합하여 측정하여 왔다. 하지만, 공연장에서 관람객들의 몰입도를 개별적으로 측정하기에는 경제적으로나 환경적으로 어려운 상황이다. 이러한 문제를 해결하기 위하여 본 연구에서는, 공연장의 전체 관람객 몰입도를 측정하기 위하여 차영상 기반의 동기화 기법을 활용하는 모형을 제시 한다. 이 기법은 우선 카메라를 통해 관람객 영상을 수집하고, 이를 차영상 기법을 이용하여 동일 장소, 시간 내 관람객들의 움직임 변화량을 측정하여 동기화 여부를 판단하는 것이다. 본 논문에서 동기화가 되었다는 의미는 관람객들이 몰입하고 있을 때, 자극원에 대하여 동시성을 가지고 반응하는 것을 말한다. 이것을 차영상 기법을 통하여 움직임의 변화량으로 환산하고, 이것을 이용하여 동적 동기화와 정적 동기화인지 구분한다. 그런 후 전체 관람객들의 움직임 변화량들을 비교하여 관람객들의 몰입도를 판단하는 모형을 구축하는 것이다. 이 연구에서는 전체 관객의 몰입도 판단 모형을 제시하고, 실제 관객의 반응 데이터를 이용한 평가를 하여 제시한 연구모형이 실제 공연장에서 그룹 관람객들의 몰입도를 측정할 수 있는 것을 확인할 수 있었다.

Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석 (Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression)

  • 김선웅;최흥식
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.107-122
    • /
    • 2017
  • 주식시장의 주가 수익률에 나타나는 변동성은 투자 위험의 척도로서 재무관리의 이론적 모형에서뿐만 아니라 포트폴리오 최적화, 증권의 가격 평가 및 위험관리 등 투자 실무 영역에서도 매우 중요한 역할을 하고 있다. 변동성은 주가 수익률이 평균을 중심으로 얼마나 큰 폭의 움직임을 보이는가를 판단하는 지표로서 보통 수익률의 표준편차로 측정한다. 관찰 가능한 표준편차는 과거의 주가 움직임에서 측정되는 역사적 변동성(historical volatility)이다. 역사적 변동성이 미래의 주가 수익률의 변동성을 예측하려면 변동성이 시간 불변적(time-invariant)이어야 한다. 그러나 대부분의 변동성 연구들은 변동성이 시간 가변적(time-variant)임을 보여주고 있다. 이에 따라 시간 가변적 변동성을 예측하기 위한 여러 계량 모형들이 제안되었다. Engle(1982)은 변동성의 시간 가변적 특성을 잘 반영하는 변동성 모형인 Autoregressive Conditional Heteroscedasticity(ARCH)를 제안하였으며, Bollerslev(1986) 등은 일반화된 ARCH(GARCH) 모형으로 발전시켰다. GARCH 모형의 실증 분석 연구들은 실제 증권 수익률에 나타나는 두터운 꼬리 분포 특성과 변동성의 군집현상(clustering)을 잘 설명하고 있다. 일반적으로 GARCH 모형의 모수는 가우스분포로부터 추출된 자료에서 최적의 성과를 보이는 로그우도함수에 대한 최우도추정법에 의하여 추정되고 있다. 그러나 1987년 소위 블랙먼데이 이후 주식 시장은 점점 더 복잡해지고 시장 변수들이 많은 잡음(noise)을 띠게 됨에 따라 변수의 분포에 대한 엄격한 가정을 요구하는 최우도추정법의 대안으로 인공지능모형에 대한 관심이 커지고 있다. 본 연구에서는 주식 시장의 주가 수익률에 나타나는 변동성의 예측 모형인 GARCH 모형의 모수추정방법으로 지능형 시스템인 Support Vector Regression 방법을 제안한다. SVR은 Vapnik에 의해 제안된 Support Vector Machines와 같은 원리를 회귀분석으로 확장한 모형으로서 Vapnik의 e-insensitive loss function을 이용하여 비선형 회귀식의 추정이 가능해졌다. SVM을 이용한 회귀식 SVR은 두터운 꼬리 분포를 보이는 주식시장의 변동성과 같은 관찰치에서도 우수한 추정 성능을 보인다. 2차 손실함수를 사용하는 기존의 최소자승법은 부최적해로서 추정 오차가 확대될 수 있다. Vapnik의 손실함수에서는 입실론 범위내의 예측 오차는 무시하고 큰 예측 오차만 손실로 처리하기 때문에 구조적 위험의 최소화를 추구하게 된다. 금융 시계열 자료를 분석한 많은 연구들은 SVR의 우수성을 보여주고 있다. 본 연구에서는 주가 변동성의 분석 대상으로서 KOSPI 200 주가지수를 사용한다. KOSPI 200 주가지수는 한국거래소에 상장된 우량주 중 거래가 활발하고 업종을 대표하는 200 종목으로 구성된 업종 대표주들의 포트폴리오이다. 분석 기간은 2010년부터 2015년까지의 6년 동안이며, 거래일의 일별 주가지수 종가 자료를 사용하였고 수익률 계산은 주가지수의 로그 차분값으로 정의하였다. KOSPI 200 주가지수의 일별 수익률 자료의 실증분석을 통해 기존의 Maximum Likelihood Estimation 방법과 본 논문이 제안하는 지능형 변동성 예측 모형의 예측성과를 비교하였다. 주가지수 수익률의 일별 자료 중 학습구간에서 대칭 GARCH 모형과 E-GARCH, GJR-GARCH와 같은 비대칭 GARCH 모형에 대하여 모수를 추정하고, 검증 구간 데이터에서 변동성 예측의 성과를 비교하였다. 전체 분석기간 1,487일 중 학습 기간은 1,187일, 검증 기간은 300일 이다. MLE 추정 방법의 실증분석 결과는 기존의 많은 연구들과 비슷한 결과를 보여주고 있다. 잔차의 분포는 정규분포보다는 Student t분포의 경우 더 우수한 모형 추정 성과를 보여주고 있어, 주가 수익률의 비정규성이 잘 반영되고 있다고 할 수 있다. MSE 기준으로, SVR 추정의 변동성 예측에서는 polynomial 커널함수를 제외하고 linear, radial 커널함수에서 MLE 보다 우수한 예측 성과를 보여주었다. DA 지표에서는 radial 커널함수를 사용한 SVR 기반의 지능형 GARCH 모형이 가장 우수한 변동성의 변화 방향에 대한 방향성 예측력을 보여주었다. 추정된 지능형 변동성 모형을 이용하여 예측된 주식 시장의 변동성 정보가 경제적 의미를 갖는지를 검토하기 위하여 지능형 변동성 거래 전략을 도출하였다. 지능형 변동성 거래 전략 IVTS의 진입규칙은 내일의 변동성이 증가할 것으로 예측되면 변동성을 매수하고 반대로 변동성의 감소가 예상되면 변동성을 매도하는 전략이다. 만약 변동성의 변화 방향이 전일과 동일하다면 기존의 변동성 매수/매도 포지션을 유지한다. 전체적으로 SVR 기반의 GARCH 모형의 투자 성과가 MLE 기반의 GARCH 모형의 투자 성과보다 높게 나타나고 있다. E-GARCH, GJR-GARCH 모형의 경우는 MLE 기반의 GARCH 모형을 이용한 IVTS 전략은 손실이 나지만 SVR 기반의 GARCH 모형을 이용한 IVTS 전략은 수익으로 나타나고 있다. SVR 커널함수에서는 선형 커널함수가 더 좋은 투자 성과를 보여주고 있다. 선형 커널함수의 경우 투자 수익률이 +526.4%를 기록하고 있다. SVR 기반의 GARCH 모형을 이용하는 IVTS 전략의 경우 승률도 51.88%부터 59.7% 사이로 높게 나타나고 있다. 옵션을 이용하는 변동성 매도전략은 방향성 거래전략과 달리 하락할 것으로 예측된 변동성의 예측 방향이 틀려 변동성이 소폭 상승하거나 변동성이 하락하지 않고 제자리에 있더라도 옵션의 시간가치 요인 때문에 전체적으로 수익이 실현될 수도 있다. 정확한 변동성의 예측은 자산의 가격 결정뿐만 아니라 실제 투자에서도 높은 수익률을 얻을 수 있기 때문에 다양한 형태의 인공신경망을 활용하여 더 나은 예측성과를 보이는 변동성 예측 모형을 개발한다면 주식시장의 투자자들에게 좋은 투자 정보를 제공하게 될 것이다.