• Title/Summary/Keyword: closed-loop simulation

Search Result 561, Processing Time 0.027 seconds

Optimal Controller for Near-Space Interceptor with Actuator Saturation

  • Fan, Guo-Long;Liang, Xiao-Geng;Hou, Zhen-Qian;Yang, Jun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.256-263
    • /
    • 2013
  • The saturation of the actuator impairs the response performance of the near space interceptor control system. A control system based on the properties of linear tracking system is designed for this problem. The properties are that the maximum value of the pseudo-Lyapunov function of the linear tracking control system do not present at the initial state but at the steady state, based on which the bounded stability problem is converted into linear tracking problem. The pseudo-Lyapunov function of the linear tracking system contain the input variables; the amplitude and frequency of the input variables affect the stability of the nonlinear control system. Designate expected closed-loop poles area for different input commands and obtain a controller which is function of input variables. The coupling between variables and linear matrices make the control system design problem non-convex. The non-convex problem is converted into a convex LMI according to the Shur complement lemma and iterative algorithm. Finally the simulation shows that the designed optimal control system is quick and accurate; the rationality of the presented design techniques is validated.

Evaporator Superheat Control of a Multi-type Air-Conditioning/Refrigeration System (멸티형 공조/냉동시스템의 증발기 과열도 제어)

  • 김태섭;홍금식;손현철
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.253-265
    • /
    • 2001
  • This paper investigates a PI control problem for the evaporator superheat, i.e., temperature difference between the two-phase region and the exit region of an evaporator, for multi-type air-conditioning/refrigeration system. Mathematical model describing the characteristics of compressor, condenser, evaporator, and electronic expansion valve are first derived. Then, two transfer function from the current input applied to an electronic expansion valve to the wall-temperatures of an evaporator tube at two-phase region and superheated region, respectively, are derived. The stability of the closed loop system with the PI controller designed it analyzed by using Nyquist stability criterion. Simulation results are provided.

  • PDF

Robust H∞ Fuzzy Control for Discrete-Time Nonlinear Systems with Time-Delay (시간 지연을 갖는 이산 시간 비선형 시스템에 대한 H∞ 퍼지 강인 제어기 설계)

  • Kim Taek Ryong;Park Jin Bae;Joo Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.324-329
    • /
    • 2005
  • In this paper, a robust $H\infty$ stabilization problem to a uncertain discrete-time nonlinear systems with time-delay via fuzzy static output feedback is investigated. The Takagj-Sugeno (T-S) fuzzy model is employed to represent an uncertain nonlinear system with time-delayed state. Then, the parallel distributed compensation technique is used for designing of the robust fuzzy controller. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust $H\infty$ controllers are given in terms of linear matrix inequalities via similarity transform and congruence transform technique. We have shown the effectiveness and feasibility of the proposed method through the simulation.

Study on Controller Design of AC Servo Permanent Magnet Synchronous Motor by Matrix Converter : Speed Controller (매트릭스 컨버터에 의한 AC 서보 영구자석형 동기전동기의 제어기 설계에 대한 고찰 : 속도제어기)

  • Jeong, Chung-Il;Lee, Sang-Cheol;Mo, Dong-Yeong;Choi, Chang-Young;Kim, Tae-Woong;Park, Gwi-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.106-108
    • /
    • 2008
  • This paper deals with the design for speed controller to drive PMSM by matrix converter without DC-link circuit as the power conversion system of AC servo motor drive. To design the speed controller of PMSM drive, the closed-loop transfer function of speed controller is calculated and then the frequency-domain response characteristics are analyzed by bode plot using Matlab. Based on the results by bode plot, the speed control gains are determined. As the real effects of controller designed in the frequency-domain display in the time-domain, the performance of speed controller is confirmed by the step response of speed controller. The design examples are shown and its validity of the design method mentioned in the paper is verified through PSIM simulation.

  • PDF

Impedance Matching Based Control for the Resonance Damping of Microgrids with Multiple Grid Connected Converters

  • Tan, Shulong;Geng, Hua;Yang, Geng
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2338-2349
    • /
    • 2016
  • This paper presents an impedance-matching-based control scheme for the harmonic resonance damping of multiple grid-connected-converters (GCCs) with LCL filters. As indicated in this paper, harmonic resonance occurs if a GCC possesses an output impedance that is not matched with the rest of the network in some specific frequency bands. It is also revealed that the resonance frequency is associated with the number of GCCs, the grid impedance and even the capacitive loads. By controlling the grid-side current instead of the converter-side current, the critical LCL filter is restricted as an internal component. Thus, the closed-loop output impedance of the GCC within the filter can be configured. The proposed scheme actively regulates the output impedance of the GCC to match the impedance of the external network, based on the detected resonance frequency. As a result, the resonance risk of multiple GCCs can be avoided, which is beneficial for the plug-and-play property of the GCCs in microgrids. Simulation and experimental results validate the effectiveness of the proposed method.

A Unified Framework for Overcoming Motion Constraints of Robots Using Task Transition Algorithm (작업 전이 알고리즘 기반 로봇 동작 제한 극복 프레임워크)

  • Jang, Keunwoo;Kim, Sanghyun;Park, Suhan;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.129-141
    • /
    • 2018
  • This paper proposes a unified framework that overcomes four motion constraints including joint limit, kinematic singularity, algorithmic singularity and obstacles. The proposed framework is based on our previous works which can insert or remove tasks continuously using activation parameters and be applied to avoid joint limit and singularity. Additionally, we develop a method for avoiding obstacles and combine it into the framework to consider four motion constraints simultaneously. The performance of the proposed framework was demonstrated by simulation tests with considering four motion constraints. Results of the simulations verified the framework's effectiveness near joint limit, kinematic singularity, algorithmic singularity and obstacles. We also analyzed sensitivity of our algorithm near singularity when using closed loop inverse kinematics depending on magnitude of gain matrix.

A Neural Network Adaptive Controller for Autonomous Diving Control of an Autonomous Underwater Vehicle

  • Li, Ji-Hong;Lee, Pan-Mook;Jun, Bong-Huan
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.374-383
    • /
    • 2004
  • This paper presents a neural network adaptive controller for autonomous diving control of an autonomous underwater vehicle (AUV) using adaptive backstepping method. In general, the dynamics of underwater robotics vehicles (URVs) are highly nonlinear and the hydrodynamic coefficients of vehicles are difficult to be accurately determined a priori because of variations of these coefficients with different operating conditions. In this paper, the smooth unknown dynamics of a vehicle is approximated by a neural network, and the remaining unstructured uncertainties, such as disturbances and unmodeled dynamics, are assumed to be unbounded, although they still satisfy certain growth conditions characterized by 'bounding functions' composed of known functions multiplied by unknown constants. Under certain relaxed assumptions pertaining to the control gain functions, the proposed control scheme can guarantee that all the signals in the closed-loop system satisfy to be uniformly ultimately bounded (UUB). Simulation studies are included to illustrate the effectiveness of the proposed control scheme, and some practical features of the control laws are also discussed.

Robust Adaptive Fuzzy Backstepping Control for Trajectory Tracking of an Electrically Driven Nonholonomic Mobile Robot with Uncertainties (불확실성을 가지는 전기 구동 논홀로노믹 이동 로봇의 궤적 추종을 위한 강인 적응 퍼지 백스테핑 제어)

  • Shin, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.902-911
    • /
    • 2012
  • This paper proposes a robust adaptive fuzzy backstepping control scheme for trajectory tracking of an electrically driven nonholonomic mobile robot with uncertainties and actuator dynamics. A complete model of an electrically driven nonholonomic mobile robot described in this work includes all models of the uncertain robot kinematics with a nonholonomic constraint, the uncertain robot body dynamics with uncertain frictions and unmodeled disturbances, and the uncertain actuator dynamics with disturbances. The proposed control scheme uses the backstepping control approach through a kinematic controller and a robust adaptive fuzzy velocity tracking controller. The presented control scheme has a voltage control input with an auxiliary current control input rather than a torque control input. It has two FBFNs(Fuzzy Basis Function Networks) to approximate two unknown nonlinear robot dynamic functions and a robust adaptive control input with the proposed adaptive laws to overcome the uncertainties such as parameter uncertainties and external disturbances. The proposed control scheme does not a priori require the accurate knowledge of all parameters in the robot kinematics, robot dynamics and actuator dynamics. It can also alleviate the chattering of the control input. Using the Lyapunov stability theory, the stability of the closed-loop robot control system is guaranteed. Simulation results show the validity and robustness of the proposed control scheme.

Design of Robust Power System Stabilizers Using Disturbance Rejection Method (외란 소거법을 이용한 강인한 전력 계통 안정화 장치 설계)

  • Kim, Do-Woo;Yun, Gi-Gab;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1195-1199
    • /
    • 1998
  • In this paper a design method of robust power system stabilizers is proposed by means of robust linear quadratic regulator design technique under power system's operating condition change, which is caused by inner structure uncertainties and disturbances into a power system. It is assumed that the uncertainties present in the system are modeled as one equivalent signal. In this connections an optimal LQR control input for disturbance rejection, the output feedback gain for eliminating the disturbance are calculated. In this case. PSS input signal is obtained on the basis of weighted ${\Delta}P_e$ and $\Delta\omega$. In order to stabilize the overall control of system. Pole placement algorithm is applied in addition. making the poles of the closed loop system to move into a stable region in the complex plane. Some simulations have been conducted to verify the feasibility of the proposed control method on a machine to infinite bus power system. From the simulation results validation of the proposed method could be achieved by comparisons with the conventional PSS with phase lag-lead compensation.

  • PDF

Modal-based mixed vibration control for uncertain piezoelectric flexible structures

  • Xu, Yalan;Qian, Yu;Chen, Jianjun;Song, Gangbing
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.229-244
    • /
    • 2015
  • H-infinity norm relates to the maximum in the frequency response function and H-infinity control method focuses on the case that the vibration is excited at the fundamental frequency, while 2-norm relates to the output energy of systems with the input of pulses or white noises and 2-norm control method weighs the overall vibration performance of systems. The trade-off between the performance in frequency-domain and that in time-domain may be achieved by integrating two indices in the mixed vibration control method. Based on the linear fractional state space representation in the modal space for a piezoelectric flexible structure with uncertain modal parameters and un-modeled residual high-frequency modes, a mixed dynamic output feedback control design method is proposed to suppress the structural vibration. Using the linear matrix inequality (LMI) technique, the initial populations are generated by the designing of robust control laws with different H-infinity performance indices before the robust 2-norm performance index of the closed-loop system is included in the fitness function of optimization. A flexible beam structure with a piezoelectric sensor and a piezoelectric actuator are used as the subject for numerical studies. Compared with the velocity feedback control method, the numerical simulation results show the effectiveness of the proposed method.