• Title/Summary/Keyword: closed-loop simulation

Search Result 561, Processing Time 0.023 seconds

A High-Performance Position Sensorless Motion Control System of Induction Motor with Direct Torque Control (직접 토크제어에 의한 위치검출기 없는 유도전동기의 고성능 모션제어 시스템)

  • Kim, Min-Hoe;Kim, Nam-Hun;Baek, Won-Sik
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.7
    • /
    • pp.399-405
    • /
    • 2002
  • This paper presents an implementation of digital high-performance Position sensorless motion control system of an induction motor drives with Direct Torque Control(DTC). The system consist of closed loop stator flux and torque observer, speed and torque estimators, two hysteresis controller, optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP board. The stator flux observer is based on the combined current and voltage model with stator flux feedback adaptive control of which inputs are current and voltage sensed on motor terminal for wide speed range. The speed observer is using the model reference adaptive system(MRAS) with rotor flux linkages for speed turning signal. The simulation and experimental results are provided to evacuate the consistency and the performance of the suggested position sensorless control algorithm. The developed position sensorless system are shown a good motion control response characteristic and high performance features using 2.2[kw] general purposed induction motor.

A New Gate Pulse Generating Method of 12-Pulse Phase Controlled Rectifier for HVDC (HVDC용 12-펄스 위상제어정류기의 새로운 게이트 펄스 발생 기법)

  • Ahn, Jong-Bo;Kim, Kook-Hun;Lee, Jong-Moo;Lee, Ki-Do
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.139-141
    • /
    • 2000
  • High voltage direct current(HVDC) transmission system uses the phase controlled rectifier triggered by means of IPC(individual phase control) or EPC(equidistant pulse control). Most HVDC system has adopted EPC method that can solve the harmonic instability problem of IPC method in weak power system. But EPC has inherent indirect synchronizing problem requiring the closed loop control. This paper presents the new gate pulse generating method for 12-pulse HVDC converter, which combines IPC with EPC. Simulation and test results are presented. The basic concept is that it generates the gating pulse for 12-pulse converter by synthesizing the internal phase reference using the frequency and phase information of a sin91e phase voltage. To ensure the reliability of the external phase input, Potential transformer that detects the phase voltage has redundancy. Using fault detecting algorithm the healthy input is always guaranteed. And the frequency compensation function was reinforced.

  • PDF

Speed Control of SRM by Pl Controller with Fuzzy Logic Modifier (Fuzzy Logic Modifier를 가진 Pl 제어기에 의한 스위치드 리럭턴스 전동기의 속도제어)

  • Kim, Bo-Hyung;Kim, Jae-Mun;Won, Chung-Yuen
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.299-308
    • /
    • 1998
  • In this paper, reliable switched reluctance motor(SRM) drive system and 4-rule based fuzzy logic modifier(FLM) of the conventional PI controller are presented. The i80C196KC, low-cost one-chip microcontroller is used for designing SRM drive controller which include the speed controller and the starting sequence. The fuzzy logic modifier which exhibits a stabilizing effects on the closed-loop system, has good robustness regarding the improperly tuned PI controller. The simulation and experimental results are performed to verify the capability of proposed control method on 6/4 salient type SRM.

  • PDF

Robust Adaptive Fuzzy Tracking Control Using a FBFN for a Mobile Robot with Actuator Dynamics (구동기 동역학을 가지는 이동 로봇에 대한 FBFN을 이용한 강인 적응 퍼지 추종 제어)

  • Shin, Jin-Ho;Kim, Won-Ho;Lee, Moon-Noh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.319-328
    • /
    • 2010
  • This paper proposes a robust adaptive fuzzy tracking control scheme for a nonholonomic mobile robot with external disturbances as well as parameter uncertainties in the robot kinematics, the robot dynamics, and the actuator dynamics. In modeling a mobile robot, the actuator dynamics is integrated with the robot kinematics and dynamics so that the actuator input voltages are the control inputs. The presented controller is designed based on a FBFN (Fuzzy Basis Function Network) to approximate an unknown nonlinear dynamic function with the uncertainties, and a robust adaptive input to overcome the uncertainties. When the controller is designed, the different parameters for two actuator models in the actuator dynamics are taken into account. The proposed control scheme does not require the kinematic and dynamic parameters of the robot and actuators accurately. It can also alleviate the input chattering and overcome the unknown friction force. The stability of the closed-loop control system including the kinematic control system is guaranteed by using the Lyapunov stability theory and the presented adaptive laws. The validity and robustness of the proposed control scheme are shown through a computer simulation.

Control System Design for Marine Vessel Satisfying Mixed H2/H Performance Condition (H2/H 설계사양을 만족하는 선박운동제어계 설계에 관한 연구)

  • Kang, Chang-Nam;Kim, Young-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.846-852
    • /
    • 2013
  • In this paper, the authors propose a new approach to control problem of the marine vessels which are moored or controlled by actuators. The vessel control problem in the specified area is called a DPS (Dynamic Positioning System). The main objective of this paper is to obtain more useful control design method for DPS. In this problem, a complicate fact is control allocation which is a numerical method for distributing the control signal to the controlled system. For this, many results have been given and verified by other researchers using two individual processes. It means that the controller design and control allocation design process are carried out individually. In this paper, the authors give more sophisticated design solution on this issue. In which the controller design and control allocation problem are unified by a robust controller design problem. In other word, the stability of the closed-loop system, control performance and allocation problem are unified by an LMI (Linear Matrix Inequality) constraint based on $H_2/H_{\infty}$ mixed design framework. The usefulness of proposed approach is verified by simulation with a supply vessel model and found works well.

In-process Truing of Metal-bonded Diamond Wheels for Electrolytic In-process Dressing (ELID) Grinding

  • Saleh, Tanveer;Biswas, Indraneel;Lim, Han-Seok;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.3-6
    • /
    • 2008
  • Electrolytic in-process dressing (ELID) grinding is a new technique for achieving a nanoscale surface finish on hard and brittle materials such as optical glass and ceramics. This process applies an electrochemical dressing on the metal-bonded diamond wheels to ensure constant protrusion of sharp cutting grits throughout the grinding cycle. In conventional ELID grinding, a constant source of pulsed DC power is supplied to the ELID cell, but a feedback mechanism is necessary to control the dressing power and obtain better performance. In this study, we propose a new closed-loop wheel dressing technique for grinding wheel truing that addresses the efficient correction of eccentric wheel rotation and the nonuniformity in the grinding wheel profile. The technique relies on an iterative control algorithm for the ELID power supply. An inductive sensor is used to measure the wheel profile based on the gap between the sensor head and wheel edge, and this is used as the feedback signal to control the pulse width of the power supply. We discuss the detailed mathematical design of the control algorithm and provide simulation results that were confirmed experimentally.

Proposal of Practical Reference-Model and It's Performance Improvement for PID Control (PID제어를 위한 실용적인 기준 모델 제안과 성능개선)

  • Hur, J.G.;Yang, K.U.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.66-72
    • /
    • 2007
  • This study proposed new method to decide the reference model necessary for design PID controller. In generally, control design problems using the reference model have the following two factors. One factor is that numerical model of the controlled system can be obtained extremely, and the other is that specification for the closed-loop dynamic performance is pure moderate. Therefore, the control design procedure is essentially based on the partial reference model matching which offers a reasonable method to simplify the design and the controller configuration under the controlled system uncertainty. ITAE(Integral of time-multiplied absolute error) performance index and Kitamori method etc. which were used a reference model method had a limit to settling time and rising time of reference model that it arrived to steady state response according to the controlled system. On this study, if it only knew peak time of overshoot and settling time by measurement signal of the controlled system, it can be made the reference model easily. We proposed new method to improve performance index of the reference model superior to existing reference model index and illustrate the numerical simulation results to show the effectiveness of proposed control method design.

  • PDF

Decentralized Robust Adaptive Neural Network Control for Electrically Driven Robot Manipulators with Bounded Input Voltages (제한된 입력 전압을 갖는 전기 구동 로봇 매니퓰레이터에 대한 분산 강인 적응 신경망 제어)

  • Shin, Jin-Ho;Kim, Won-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.11
    • /
    • pp.753-763
    • /
    • 2015
  • This paper proposes a decentralized robust adaptive neural network control scheme using multiple radial basis function neural networks for electrically driven robot manipulators with bounded input voltages in the presence of uncertainties. The proposed controller considers both robot link dynamics and actuator dynamics. Practically, the controller gain coefficients applied at each joint may be nonlinear time-varying and the input voltage at each joint is saturated. The proposed robot controller overcomes the various uncertainties and the input voltage saturation problem. The proposed controller does not require any robot and actuator parameters. The adaptation laws of the proposed controller are derived by using the Lyapunov stability analysis and the stability of the closed-loop control system is guaranteed. The validity and robustness of the proposed control scheme are verified through simulation results.

A Robust State Feedback Control of Gimbal System with Parametric Uncertainty (불확실성 파라미터를 포함하는 김발시스템의 상태궤환 강인제어기 설계)

  • Jeon, YeongBeom;Choi, WooSeok;Han, JiHoon;Lee, SungWoo;Kang, TaeHa
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.140-147
    • /
    • 2015
  • In this paper, we propose a state feedback robust controller of 2-axis gimbal system which have bounded parametric uncertainty. The proposed controller is robust against dynamics variations of gimbal system and contains a dynamic compensator in order to improve a steady state error and a transient response. The stability of the closed-loop system is proved by Lyapunov approach. The performance of the proposed method is demonstrated by simulation on a 2-axis gimbal system.

Performance Analysis of a Flat-Earth Explicit Guidance Algorithm Applicable for Upper Stages of Space Launch Vehicles (발사체 상단 유도를 위한 단순화된 직접식 유도 방식 성능 분석)

  • Song, Eun-Jung;Cho, Sang-Bum;Park, Chang-Su;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.169-177
    • /
    • 2012
  • This paper considers the explicit guidance algorithm to determine the closed-loop guidance law applicable to upper stages of a given space launch vehicle. It has the advantage of very simple forms derived from the flat earth assumption, which is appropriate for its on-board application. However the simple time-to-go prediction equation produces the degraded guidance performance of the launcher because of its inaccuracy. To overcome the problem, the elaborate prediction equations, which have been employed in Saturn and H-II, are attempted here. Finally, the simulation results show that the simple guidance approach requires the more accurate time-to-go prediction and gravity integrals for its broad application.