• Title/Summary/Keyword: closed-loop cooling system

Search Result 37, Processing Time 0.023 seconds

Analysis of Test Operations Effect of Open-Closed Loops Complex Geothermal System Combined with Groundwater Well (지하수정호 결합 복합지열시스템의 시범운영 효과분석)

  • Song, Jae-Yong;Kim, Ki-Joon;Lee, Geun-Chun;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.475-488
    • /
    • 2018
  • This study evaluates geothermal system efficiency in terms of input power and heat exchange volume on the heat-source and load sides, by applying a combined open-closed type loop system comprising a geothermal system and a groundwater well to a cultivation site. In addition, this study analyzes the effects of heating and cooling for a complex geothermal system, by evaluating the temperatures of an external site and a cultivation site during operation. During cooling operations the heat exchange volume on the heat source side, average 90.0kW/h for an open type system with an input of 235L/minute groundwater, and 40.1kW/h for a closed type system with an input of 85L/minute circulating water, for a total average heat exchange volume of 130.1kW/h. The actual heat exchange volume delivered on the load side averages 110.4kW/h. The average EER by analysis of the geothermal system's cooling efficiency is 5.63. During heating operation analysis, the heat exchange volume on the heat source side, average 60.4kW/h in an open type system with an input of 266L/minute groundwater, and 22.4kW/h in closed type system with an input of 86L/minute circulating water, for a total average heat exchange volume of 82.9kW/h. The actual heat exchange volume delivered on the load side averages 112.0kW/h in our analysis. The average COP determined by analysis of the geothermal system's heating efficiency is 3.92. Aa a result of the tradeoff between the outside temperature and the inside temperature of the production facility and comparing the facility design with a combined well and open-closed loops geothermal(CWG) system, we determine that the 30RT-volume CWG system temperature are lower by $3.4^{\circ}C$, $6.8^{\circ}C$, $10.1^{\circ}C$ and $13.4^{\circ}C$ for ouside temperature is of $20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$ and $35^{\circ}C$, respectively. Based on these results, a summer cooling effect of about $10^{\circ}C$ is expected relative to a facility without a CWG system as the outside temperature is generally ${\geq}30^{\circ}C$. Our results suggest that a complex geothermal system provides improvement under a variety of conditions even when heating conditions in winter are considered. Thus It is expected that the heating-cooling tradeoffs of complex geothermal system are improved by using water screen.

Sensitivity analysis of numerical schemes in natural cooling flows for low power research reactors

  • Karami, Imaneh;Aghaie, Mahdi
    • Advances in Energy Research
    • /
    • v.5 no.3
    • /
    • pp.255-275
    • /
    • 2017
  • The advantages of using natural circulation (NC) as a cooling system, has prompted the worldwide development to investigate this phenomenon more than before. The interesting application of the NC in low power experimental facilities and research reactors, highlights the obligation of study in these laminar flows. The inherent oscillations of NC between hot source and cold sink in low Grashof numbers necessitates stability analysis of cooling flow with experimental or numerical schemes. For this type of analysis, numerical methods could be implemented to desired mass, momentum and energy equations as an efficient instrument for predicting the behavior of the flow field. In this work, using the explicit, implicit and Crank-Nicolson methods, the fluid flow parameters in a natural circulation experimental test loop are obtained and the sensitivity of solving approaches are discussed. In this way, at first, the steady state and transient results from explicit are obtained and compared with experimental data. The implicit and crank-Nicolson scheme is investigated in next steps and in subsequent this research is focused on the numerical aspects of instability prediction for these schemes. In the following, the assessment of the flow behavior with coarse and fine mesh sizes and time-steps has been reported and the numerical schemes convergence are compared. For more detail research, the natural circulation of fluid was modeled by ANSYS-CFX software and results for the experimental loop are shown. Finally, the stability map for rectangular closed loop was obtained with employing the Nyquist criterion.

Intelligent cooling control for mass concrete relating to spiral case structure

  • Ning, Zeyu;Lin, Peng;Ouyang, Jianshu;Yang, Zongli;He, Mingwu;Ma, Fangping
    • Advances in concrete construction
    • /
    • v.14 no.1
    • /
    • pp.57-70
    • /
    • 2022
  • The spiral case concrete (SCC) used in the underground powerhouse of large hydropower stations is complex, difficult to pour, and has high requirements for temperature control and crack prevention. In this study, based on the closed-loop control theory of "multi-source sensing, real analysis, and intelligent control", a new intelligent cooling control system (ICCS) suitable for the SCC is developed and is further applied to the Wudongde large-scale underground powerhouse. By employing the site monitoring data, numerical simulation, and field investigation, the temperature control quality of the SCC is evaluated. The results show that the target temperature control curve can be accurately tracked, and the temperature control indicators such as the maximum temperature can meet the design requirements by adopting the ICCS. Moreover, the numerical results and site investigation indicate that a safety factor of the spiral case structure was sure, and no cracking was found in the concrete blocks, by which the effectiveness of the system for improving the quality of temperature control of the SCC is verified. Finally, an intelligent cooling control procedure suitable for the SCC is proposed, which can provide a reference for improving the design and construction level for similar projects.

Design Considerations of Cryogenic Cooling System for High Field Magnets

  • Choi, Yeon-Suk;Kim, Dong-Lak;Lee, Byoung-Seob;Yang, Hyung-Suk;Yoo Jong-Shin;Painter Thomas A.;Miller John R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.4
    • /
    • pp.30-33
    • /
    • 2006
  • Several crucial issues are discussed in the design of cryogenic cooling system for high field magnets. This study is mainly motivated by our ongoing program to develop a 21 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR MS). The magnets of this system will be built horizontally to accomplish the requirement of user friendliness and reliability, and the replenishment of cryogen will not be necessary by a closed-loop cooling concept. The initial cool-down and safety are basically considered in this paper. The effects of the helium II volume and the gap distance of the weight load relief valve (or safety valve) on the cool-down time and temperature rising during an off-normal state are discussed. The total amount of cryogenic cooling loads and the required helium flow rate during cool-down are also estimated by a relevant heat transfer analysis. The temperatures of cryogen-free radiation shield are finally determined from the refrigeration power of a cryocooler and the total cryogenic loads.

A Study of Comparative Economic Evaluation for the System of Ground Source Heat Pump and District Heating and Cooling:Focusing on the Analysis of Operation Case (지열히트펌프와 지역냉난방 시스템의 운영사례를 중심으로 경제성 비교분석 연구)

  • Lee, Key Chang;Hong, Jun Hee;Kong, Hyoung Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.3
    • /
    • pp.103-109
    • /
    • 2016
  • The purpose of this study is to perform comparative economic evaluation for the systems of ground source heat pump (GSHP) and district heating and cooling (DHC) by focusing on the analysis of operation case of GSHP. The adapted research object is a public office building located in Seoul. The capacity of ground source pump is about 3,900 kW. Ground heat exchanger is closed loop type. The analysis period for life cycle cost is 30 years. Economic evaluation is assessed from the viewpoints of the following four parts: initial cost, energy cost, maintenance and replacement cost, and environment cost. The total life cycle cost of GSHP is approximately 8,447 million won. The cost of the DHC System is approximately 3,793 million won. The cost of the DHC is approximately 46% lower than GSHP system under the condition of current rate for GSHP and DHC.

Performance Analysis for Open-loop Geothermal System with Spill-way technology by Real-scale Experiment (관정간 도수통로를 설치한 개방형 지열 시스템의 냉방성능 실험)

  • Kim, Hong kyo;Bae, Sangmu;Nam, Yujin;Jeoun, Oun;Oh, Jong Hyun;Lee, Byong Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.4
    • /
    • pp.186-194
    • /
    • 2018
  • A ground-source heat pump system (GSHP) is more energy efficient than other heat-source systems because it uses annual constant underground and water temperatures. Especially, two-well geothermal systems using groundwater as the heat source can achieve higher performance than closed-loop geothermal systems. However, performance of two-well geothermal systems is decreased by occurring overflow according to scale during long-term operations. Therefore, this study presents a two-well pairing geothermal system that controls the groundwater level of a diffusion well. In addition, a two-well pairing geothermal system and an SCW geothermal system were installed, and a comparative analysis of cooling performance depending on system operation under the same load conditions was conducted. The result was that the average heat pump coefficient of performance (COP) of the two-well pairing system was 6.5, and the entire system COP was 4.3.

Numerical Simulations for Optimal Utilization of Geothermal Energy under Groundwater-bearing Conditions (지하수 부존지역에서 최적 지열에너지 활용방식 수치 모의)

  • Kim, Jin-Sung;Cha, Jang-Hwan;Song, Sung-Ho;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.487-499
    • /
    • 2014
  • While the vertical open type of heat exchanger is more effective in areas of abundant groundwater, and is becoming more widely used, the heat exchanger most commonly used in geothermal heating and cooling systems in Korea is the vertical closed loop type. In this study, we performed numerical simulations of the optimal utilization of geothermal energy based on the hydrogeological and thermal properties to evaluate the efficiency of the vertical open type in areas of abundant groundwater supply. The first simulation indicated that the vertical open type using groundwater directly is more efficient than the vertical closed loop type in areas of abundant groundwater. Furthermore, a doublet system with separated injection and extraction wells was more efficient because the temperature difference (${\Delta}$) between the injection and extraction water generated by heat exchange with the ground is large. In the second simulation, we performed additional numerical simulations of the optimal utilization of geothermal energy that incorporated heat transfer, distance, flow rate, and groundwater hydraulic gradient targeting a single well, SCW (standing column well), and doublet. We present a flow diagram that can be used to select the optimal type of heat exchanger based on these simulation results. The results of this study indicate that it is necessary to examine the adequacy of the geothermal energy utilization system based on the hydrogeological and thermal properties of the area concerned, and also on a review of the COP (coefficient of performance) of the geothermal heating and cooling system.

Analysis of Economic Feasibility and Reductions of Carbon Dioxide Emission of Geothermal Heating and Cooling System using Groundwater (지하수를 이용한 지열 냉난방시스템의 경제성 및 이산화탄소 저감량 분석)

  • Kim, Jin-Sung;Song, Sung-Ho;Jeong, Gyo-Cheol;Cha, Jang-Hwan
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.599-612
    • /
    • 2015
  • The development of renewable energy technologies that can replace fossil fuels is environmentally important; however, such technologies must be economically feasible. Economic analyses are important for assessing new projects such as geothermal heating-cooling systems, given their large initial costs. This study analyzed the economics and carbon dioxide emissions of: a SCW (standing column well), a vertical closed loop boiler, a gas boiler, and an oil boiler. Life cycle cost analysis showed that the SCW geothermal heating-cooling system had the highest economic feasibility, as it had the highest cost saving and also the lowest carbon dioxide emissions. Overall, it appears that geothermal systems can save money when applied to large-scale controlled agriculture complexes and reclaimed land.

Performance Evaluation and Economic Estimation of Ground Source Heat Pump Cooling and Heating System (지열 냉난방 시스템의 성능 및 경제성 평가)

  • Lim Hyo Jae;Song Yoon Seok;Kong Hyoung Jin;Park Seong Koo
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.296-300
    • /
    • 2004
  • Performance evaluation and economic estimation were conducted on the water to water GSHP (Ground Source Heat Pump) installed in existing building. Ground heat exchanger was a closed vertical loop type and sized to be 5 boreholes and 100m depth per borehole. Operation efficiency of the system shows that, COP increased from 3.0 to 4.2 with entering water temperature in heating operation, however, COP decreased from 5.0 to 3.7 in cooling operation. Economic estimation was analyzed by LCC (Life Cycle Cost) method and it showed that GSHP could save 68% of cost compare to the conventional oil source. Thus, despite of the large amount of initial cost, GSHP has a economic advantage to the other energy sources.

Experimental Study of Adoption of Alternative Refrigerant for Avionic Equipment Cooling System (항공전자기기용 냉각시스템의 대체냉매 적용에 관한 실험적 연구)

  • Kang, Hoon;Jung, Jongho;Jung, Minwoo;Chi, Yongnam;Yoo, Yongseon;Choi, Heeju;Byeon, Youngman;Kim, Youngjin;Oh, Kwangyoon;Kim, Yongchan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.431-439
    • /
    • 2013
  • A cooling system is adopted to control the thermal load from the avionic equipments in an aircraft for stable operation. In this study, an avionic cooling system was designed and manufactured by adopting a vapor compression cycle with a closed-loop air-circulation system to investigate the operating characteristics of an alternative refrigerant. The performance characteristics of a cooling system adopting R236fa as an alternative refrigerant were experimentally determined by varying the refrigerant charging amount, expansion valve opening, and compressor rotation speed. The experimental results were analyzed and compared with those of a cooling system adopting R124 as a refrigerant. The possibility of the adoption of R236fa as an alternative refrigerant was verified, and design solutions were suggested to improve the system efficiency.