• Title/Summary/Keyword: closed-form analysis

Search Result 687, Processing Time 0.037 seconds

Design of Friction Dampers installed at a Multi-Story Building under Seismic Load (지진하중을 받는 다층 건물에 설치된 마찰감쇠기 설계)

  • Seong, Ji-Young;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.457-462
    • /
    • 2011
  • In this study, a simplified design procedure for friction dampers of a multi-story structure in order to reduce seismic response is proposed. To get insight for control effect of the structure with friction dampers is difficult, because of a nonlinear characteristic by a friction damper. Since a control force of a friction damper is influenced by coupling velocity between floors, adjoining modes are coupled. Thus structural response are derived by assuming steady-state response in resonance. As it is impossible that an exact solution is obtained for seismic load, first, a closed form solution can be achieved under harmonic vibration. Second, to convert a three-story building into a single-degree-of-freedom(SDOF) structure, modal analysis is performed. Third, an equivalent damping ratio is derived with utilizing closed form solution. And response reducing factor is proposed by it. Finally, friction force of a damper is designed for using response reducing factor, and then designed dampers are verified for seven seismic data. The nonlinear analysis results confirm the validity of the proposed procedure.

Performance Analysis of Distributed Antenna Systems with Antenna Selection over MIMO Rayleigh Fading Channel

  • Yu, Xiangbin;Tan, Wenting;Wang, Ying;Liu, Xiaoshuai;Rui, Yun;Chen, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3016-3033
    • /
    • 2014
  • The downlink performance of distributed antenna systems (DAS) with antennas selection is investigated in Rayleigh fading multicell environment, and the corresponding system capacity and bit error rate (BER) analysis are presented. Based on the moment generating function, the probability density function (PDF) and cumulative distribution function (CDF) of the effective signal to interference plus noise ratio (SINR) of the system are first derived, respectively. Then, with the available CDF and PDF, the accurate closed-form expressions of average channel capacity and average BER are further derived for exact performance evaluation. To simplify the expression, a simple closed-form approximate expression of average channel capacity is obtained by means of Taylor series expansion, with the performance results close to the accurate expression. Besides, the system outage capacity is analyzed, and an accurate closed-form expression of outage capacity probability is derived. These theoretical expressions can provide good performance evaluation for DAS downlink. It can be shown by simulation that the theoretical analysis and simulation are consistent, and DAS with antenna selection outperforms that with conventional blanket transmission. Moreover, the system performance can be effectively improved as the number of receive antennas increases.

An Interference Analysis Method with Site-Specific Path Loss Model for Wireless Personal Area Network

  • Moon, Hyun-Wook;Kwon, Se-Woong;Lee, Jong-Hyun;Yoon, Young-Joong
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.290-295
    • /
    • 2010
  • In this paper, an interference analysis method with a site-specific path loss model for a wireless personal area network (WPAN) is proposed. The site-specific path loss model is based on geometrical optics and geometric probability to consider both site-specific radio propagation characteristics and a closed-form expression to obtain the mean interference from which the uniformly distributed multiple interferers are derived. Therefore, the proposed interference analysis method can achieve more computational simplicity than the Monte-Carlo (MC) simulation, which uses the ray-tracing (RT) technique. In addition, better accuracy than the conventional interference analysis model that uses stochastic method can also be achieved. To evaluate the proposed method, a signal to the interference-noise ratio with a mean interference concept for uniformly distributed interferers is calculated and compared in two simulation scenarios. As a result, the proposed method produces not only better matched results with the MC simulation using the RT technique than the conventional interference analysis model, but also simpler and faster calculation, which is due to the site-specific path loss model and closed-form expression for interference calculation.

Closed-form and numerical solution of the static and dynamic analysis of coupled shear walls by the continuous method and the modified transfer matrix method

  • Mao C. Pinto
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.49-68
    • /
    • 2023
  • This study investigates the static and dynamic structural analysis of symmetrical and asymmetrical coupled shear walls using the continuous and modified transfer matrix methods by idealizing the coupled shear wall as a three-field CTB-type replacement beam. The coupled shear wall is modeled as a continuous structure consisting of the parallel coupling of a Timoshenko beam in tension (with axial extensibility in the shear walls) and a shear beam (replacing the beam coupling effect between the shear walls). The variational method using the Hamilton principle is used to obtain the coupled differential equations and the boundary conditions associated with the model. Using the continuous method, closed-form analytical solutions to the differential equation for the coupled shear wall with uniform properties along the height are derived and a numerical solution using the modified transfer matrix is proposed to overcome the difficulty of coupled shear walls with non-uniform properties along height. The computational advantage of the modified transfer matrix method compared to the classical method is shown. The results of the numerical examples and the parametric analysis show that the proposed analytical and numerical model and method is accurate, reliable and involves reduced processing time for generalized static and dynamic structural analysis of coupled shear walls at a preliminary stage and can used as a verification method in the final stage of the project.

A Study on Type Analysis and the Formative Exaggeration Phenomenon in Fashion through Indexical Consideration of Delong's Theory: Focus on 16th to 20th Century Women's Costumes (Delong의 지표적 고찰에 따른 형태적 과장 현상과 유형 분석 연구: 근세.근대 복식을 중심으로)

  • Bae, Jung-Min
    • Journal of the Korean Home Economics Association
    • /
    • v.48 no.6
    • /
    • pp.9-16
    • /
    • 2010
  • The formative exaggeration phenomenon, which makes the plastic space, escaping from the form peculiar to the human body, is being developed into the more diversified and abstract structure. This study analyzed the form and shape of costumes with objective attitude through the use of an oppositional concept method, which Delong presented from the formative viewpoint. Delong's theory, which was presented in this study, can be said to be one index that analyzed the form and shape of costumes. The costumes of the Renaissance Era, in which formative exaggeration is remarkable, are determinate in that they are closed and static, and can be classified into part, planer separation, and flat. The costumes of the Baroque and Rococo Eras are divided into similar formative perspectives, and can be said to be open, whole, and integrated due to indeterminate and diverse decorations. Entering modern times, the formative-exaggeration phenomenon in costumes of the Romantic Era are characterized by closed, part, and planer separation similar to costumes of the Renaissance Era. However, in the aspect of sleeve design and decoration, the characteristics of determinate and indeterminate were considered.

Stability Analysis of Tunnels Excavated in Squeezing Rock Masses (압출 암반내 굴착된 터널의 안정성해석)

  • 정소걸
    • Tunnel and Underground Space
    • /
    • v.13 no.4
    • /
    • pp.245-259
    • /
    • 2003
  • Refering to the articles "Squeezing rocks in tunnels(Barla, 1995)" and "Tunnelling under squeezing rock conditions(Barla 2002)" this article deals with technologies for design, stability analysis and construction of the tunnel being driven in the squeezing rock mass. The definition of this type of behavior was proposed by ISRM(1994). The identification and quantification of squeezing is given according to both the empirical and semi-empirical methods available to anticipate the potential of squeezing problems in tunnelling. Based on the experiences and lessons learned in recent years, the state of the art in modem construction methods was reported, when dealing with squeezing rock masses by either conventional or mechanical excavation methods. The closed-form solutions available for the analysis of the rock mass response during tunnel excavation are described in terms of the ground characteristic line and with reference to some elasto-plastic models for the given rock mass. Finally numerical methods were used for the simulation of different models and for design analysis of complex excavation and support systems, including three-dimensional conditions in order to quantify the influence of the advancing tunnel face to the deformation behavior of the tunnel.

Dynamic Analysis of Multi-Robot System Forcing Closed Kinematic Chain (복수로봇 시스템의 동력학적 연구-대상물과 닫힌 체인을 형성할때의 문제-)

  • 유범상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1023-1032
    • /
    • 1995
  • The multiple cooperating robot system plays an important role in the research of modern manufacturing system as the emphasis of production automation is more on the side of flexibility than before. While the kinematic and dynamic analysis of a single robot is performed as an open-loop chain, the dynamic formulation of robot in a multiple cooperating robot system differs from that of a single robot when the multiple cooperating robots form a closed kinematic chain holding an object simultaneously. The object may be any type from a rigid body to a multi-joint linkage. The mobility of the system depends on the kinematic configuration of the closed kinematic chain formed by robots and object, which also decides the number of independent input parameters. Since the mobility is not the same as the number of robot joints, proper constraint condition is sought. The constraints may be such that : the number of active robot joints is kept the same as mobility, all robot joints are active and have interrelations between each joint forces/torques, two robots have master-slave relation, or so on. The dynamic formulation of system is obtained. The formulation is based on recursive dual-number screw-calculus Newton-Eulerian approach which has been used for single robot analysis. This new scheme is recursive and compact symbolically and may facilitate the consideration of the object in real time.

A New Asymptotic Analysis of Throughput Enhancement from Selection Diversity in Multiuser Systems (다중 사용자 다이버시티로부터 얻게 되는 처리율 증가에 대한 새로운 근사적 분석)

  • Seo, Woo-Hyun;Kim, Sung-Tea;Kwak, Kyung-Chul;Hong, Dae-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11C
    • /
    • pp.1111-1118
    • /
    • 2007
  • This paper presents our study of throughput enhancement achieved by selection diversity in a multiuser system, called multiuser diversity (MUDiv), using a new asymptotic approach. The MUDiv gain is evaluated by deriving an asymptotic formula for the throughput enhancement from the MUDiv gain as a simple closed form introducing a Puiseux series. The formula shows that the MUDiv gain is independent of the signal-to-noise ratio (SNR). This concept can be extended to analysis applicable to scheduling algorithms, such as Max C/I and proportional fair scheduling. The MUDiv gain throughput analysis is verified using Monte-Carlo simulations.

Kinematic Analysis and Implementation of a Spherical 3-Degree-of-Freedom Parallel Mechanism (구형 3자유도 병렬 메커니즘의 기구학 해석 및 구현)

  • Lee, Seok-Hee;Kim, Whee-Kuk;Oh, Se-Min;So, Byung-Rok;Yi, Byung-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.72-81
    • /
    • 2005
  • A new spherical-type 3-degree-of-freedom parallel mechanism consisting of a two degree-of-freedom parallel module and a serial module is proposed. Two alternative designs for the serial sub-chain are suggested and compared. The first design employs RU joint arrangement for the serial sub chain structure. The second design incorporates a gear chain to drive the distal revolute joint of the serial sub-chain from the base platform of the mechanism. This modification significantly improves kinematic characteristics of the mechanism within its workspace. Firstly, the closed-form solutions of both the forward and the reverse position analysis are derived. Secondly, the first-order kinematic model with respect to three inputs which are located at the base is derived. Thirdly, it is confirmed through simulation that the modified mechanism has much more improved isotropic characteristic throughout the workspace of the mechanism. Lastly, the proposed mechanism is implemented to verify the results from this analysis.

Effect of Outdated Channel Estimates on Multiple Antennas Multiple Relaying Networks

  • Wang, Lei;Cai, Yueming;Yang, Weiwei;Yan, Wei;Song, Jialei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1682-1701
    • /
    • 2015
  • In this paper, we propose an intergraded unified imperfect CSI model and investigate the joined effects of feedback delay and channel estimation errors (CEE) for two-hop relaying systems with transmit beamforming and relay selection. We derived closed-form expressions for important performance measures including the exact analysis and lower bounds of outage probability as well as error performance. The ergodic capacity is also included with closed-form results. Furthermore, diversity and coding gains based on the asymptotic analysis at high SNRs are also presented, which are simple and concise and provide new analytical insights into the corresponding power allocation scheme. The analysis indicates that delay effect results in the coding gain loss and the diversity order loss, while CEE will merely cause the coding gain loss. Numerical results verify the theoretical analysis and illustrate the system is more sensitive to transmit beamforming delay compared with relay selection delay and also verify the superiority of optimum power allocation. We further investigate the outage loss due to the CEE and feedback delays, which indicates that the effect of the CEE is more influential at low-to-medium SNR, and then it will hand over the dominate role to the feedback delay.