• Title/Summary/Keyword: closed-form analysis

Search Result 687, Processing Time 0.033 seconds

Implementation and Verification of Linear Cohesive Viscoelastic Contact Model for Discrete Element Method (선형 부착성 점탄성 접촉모형의 DEM 적용 및 해석적 방법을 이용한 검증)

  • Yun, Tae Young;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.25-31
    • /
    • 2015
  • PURPOSES: Implementation and verification of the simple linear cohesive viscoelastic contact model that can be used to simulate dynamic behavior of sticky aggregates. METHODS: The differential equations were derived and the initial conditions were determined to simulate a free falling ball with a sticky surface from a ground. To describe this behavior, a combination of linear contact model and a cohesive contact model was used. The general solution for the differential equation was used to verify the implemented linear cohesive viscoelastic API model in the DEM. Sensitivity analysis was also performed using the derived analytical solutions for several combinations of damping coefficients and cohesive coefficients. RESULTS : The numerical solution obtained using the DEM showed good agreement with the analytical solution for two extreme conditions. It was observed that the linear cohesive model can be successfully implemented with a linear spring in the DEM API for dynamic analysis of the aggregates. CONCLUSIONS: It can be concluded that the derived closed form solutions are applicable for the analysis of the rebounding behavior of sticky particles, and for verification of the implemented API model in the DEM. The assumption of underdamped condition for the viscous behavior of the particles seems to be reasonable. Several factors have to be additionally identified in order to develop an enhanced contact model for an asphalt mixture.

A Study of Structural Analysis and Torsional Characteristic of the Sleeve Spring Type-Torsional Vibration Damper (슬리브 스프링형식 비틀림 진동감쇠기의 구조 해석 및 비틀림 특성에 관한 연구)

  • Hwang, Beom-Cheol;Kim, Chul;Bae, Won-Byoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.94-100
    • /
    • 2009
  • In diesel engines, it is inevitable that the torsional vibration is produced by the fluctuation of engine torque. Therefore, it is necessary to establish preventive measures to diminish the torsional vibration. The sleeve spring type damper is one of the preventive measures for reducing the torsional vibration. In this study, a closed form equation to predict spring constant of the sleeve spring and torsional characteristic of the torsional vibration damper was proposed to calculate stiffness of the damper and verified their availability through the finite element analysis. The theoretical values have a good agreement with the results obtained by the finite element analysis. The results obtained from the equation derived enable the designers in actual fields to be more efficient.

Analysis of the Redundant Actuation Characteristics of the Planar 3-DOF Parallel Mechanism (평면형 3자유도 병렬 메커니즘의 여유 구동 특성 분석)

  • Jeon, Jung In;Oh, Hyun Suk;Woo, Sang Hun;Kim, Sung Mok;Kim, Min Gun;Kim, Whee Kuk
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.194-205
    • /
    • 2017
  • A redundantly actuated planar 3-degree-of-freedom parallel mechanism is analyzed to show its high application potential as a haptic device. Its structure along with the closed form forward position solutions is briefly discussed. Then its geometric and kinematic characteristics via singularity analysis, the kinematic isotropy index, and the input-output force transmission ratio are investigated both for the redundantly actuated cases and for the non-redundantly actuated case. In addition, comparative joint torque simulations of the mechanism with different number of redundant actuations as well as without redundant actuation are conducted to confirm the improved joint torque distribution characteristics. Through these analyses it is shown that the geometric and kinematic characteristics of the redundantly actuated mechanism are superior to the ones of the mechanism without redundant actuation. Thus, it can be concluded that the suggested planar mechanism with redundant actuation has a very high potential for haptic device applications.

Vibration effects on remote sensing satellite images

  • Haghshenas, Javad
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.543-553
    • /
    • 2017
  • Vibration is a source of performance degradation in all optical imaging systems. Performance of high resolution remote sensing payloads is often limited due to satellite platform vibrations. Effects of Linear and high frequency sinusoidal vibrations on the system MTF are known exactly in closed form but the low frequency vibration effects is a random process and must be considered statistically. Usually the vibration MTF budget is defined based on the mission requirements and the overall MTF limitations. For analyzing low frequency effects, designer must know all the systems specifications and parameters. With a good understanding of harmful vibration frequencies and amplitudes in the system preliminary design phase, their effects could be removed totally or partially. This procedure is cost effective and let the designer to eliminate just harmful vibrations and avoids over-designing. In this paper we have analyzed the effects of low-frequency platform vibrations on the payload's modulation transfer function. We have used a statistical analysis to find the probability of imaging with a MTF equal or greater than a pre-defined budget for different missions. The worst and average cases have been discussed and finally we have proposed "look-up figures". Using these look-up figures, designer can choose the electro-optical parameters in such a way that vibration effects be less than its pre-defined budget. Furthermore, using the results, we can propose a damping profile based on which vibration frequencies and amplitudes must be eliminated to stabilize the payload system.

A tension stiffening model for analysis of RC flexural members under service load

  • Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.29-51
    • /
    • 2016
  • Tension-stiffening is the contribution of concrete between the cracks to carry tensile stresses after cracking in Reinforced Concrete (RC) members. In this paper, a tension-stiffening model has been proposed for computationally efficient nonlinear analysis of RC flexural members subjected to service load. The proposed model has been embedded in a typical cracked span length beam element. The element is visualized to consist of at the most five zones (cracked or uncracked). Closed form expressions for flexibility and stiffness coefficients and end displacements have been obtained for the cracked span length beam element. Further, for use in everyday design, a hybrid analytical-numerical procedure has been developed for nonlinear analysis of RC flexural members using the proposed tension-stiffening model. The procedure yields deflections as well as redistributed bending moments. The proposed model (and developed procedure) has been validated by the comparison with experimental results reported elsewhere and also by comparison with the Finite Element Method (FEM) results. The procedure would lead to drastic reduction in computational time in case of large RC structures.

Performance Analysis of an Energy Detection Based Cooperative Spectrum Sensing with Double Thresholds in the Presence of Noise Uncertainty (잡음 전력의 불확실성이 존재하는 환경에서 이중 임계값을 사용하는 에너지 검파 기반 협력 스펙트럼 감지의 성능 분석)

  • Lim, Chang Heon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.15-20
    • /
    • 2013
  • An energy detection based spectrum sensing is widely known to be susceptible to the noise power uncertainty. As one of the methods to resolve this problem, a cooperative spectrum sensing based on an energy detector with double thresholds has been published recently. However, its performance analysis under a fading channel has not been carried out yet. In this paper, we present a closed form of performance analysis of the scheme by extending our previous work on evaluating the performance of an energy detector in the presence of noise power uncertainty.

Static and dynamic analysis of circular beams using explicit stiffness matrix

  • Rezaiee-Pajand, Mohammad;Rajabzadeh-Safaei, Niloofar
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.111-130
    • /
    • 2016
  • Two new elements with six degrees of freedom are proposed by applying the equilibrium conditions and strain-displacement equations. The first element is formulated for the infinite ratio of beam radius to thickness. In the second one, theory of the thick beam is used. Advantage of these elements is that by utilizing only one element, the exact solution will be obtained. Due to incorporating equilibrium conditions in the presented formulations, both proposed elements gave the precise internal forces. By solving some numerical tests, the high performance of the recommended formulations and also, interaction effects of the bending and axial forces will be demonstrated. While the second element has less error than the first one in thick regimes, the first element can be used for all regimes due to simplicity and good convergence. Based on static responses, it can be deduced that the first element is efficient for all the range of structural characteristics. The free vibration analysis will be performed using the first element. The results of static and dynamic tests show no deficiency, such as, shear and membrane locking and excessive stiff structural behavior.

Performance Analysis of NOMA-based Relaying Networks with Transceiver Hardware Impairments

  • Deng, Chao;Zhao, Xiaoya;Zhang, Di;Li, Xingwang;Li, Jingjing;Cavalcante, Charles Casimiro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4295-4316
    • /
    • 2018
  • In this paper, the performance of non-orthogonal multiple access (NOMA) dual-hop (DH) amplify-and-forward (AF) relaying networks is investigated, where Nakagami-m fading channel is considered. In order to cover more details, in our analysis, the transceiver hardware impairments at source, relay and destination nodes are comprehensively considered. To characterize the effects of hardware impairments brought in NOMA DH AF relaying networks, the analytical closed-form expressions for the exact outage probability and approximate ergodic sum rate are derived. In addition, the asymptotic analysis of the outage probability and ergodic sum rate at high signal-to-noise ratio (SNR) regime are carried out in order to further reveal the insights of the parameters for hardware impairments on the network performance. Simulation results indicate the performance of asymptotic ergodic sum rate are limited by levels of distortion noise.

Throughput Analysis and Optimization of Distributed Collision Detection Protocols in Dense Wireless Local Area Networks

  • Choi, Hyun-Ho;Lee, Howon;Kim, Sanghoon;Lee, In-Ho
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.502-512
    • /
    • 2016
  • The wireless carrier sense multiple access with collision detection (WCSMA/CD) and carrier sense multiple access with collision resolution (CSMA/CR) protocols are considered representative distributed collision detection protocols for fully connected dense wireless local area networks. These protocols identify collisions through additional short-sensing within a collision detection (CD) period after the start of data transmission. In this study, we analyze their throughput numerically and show that the throughput has a trade-off that accords with the length of the CD period. Consequently, we obtain the optimal length of the CD period that maximizes the throughput as a closed-form solution. Analysis and simulation results show that the throughput of distributed collision detection protocols is considerably improved when the optimal CD period is allocated according to the number of stations and the length of the transmitted packet.

Design and Performance Analysis of a Noncoherent Code Tracking Loop for 3GPP MODEM (3GPP 모뎀용 동기 추적회로의 설계 및 성능 분석)

  • 양연실;박형래
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12A
    • /
    • pp.983-990
    • /
    • 2003
  • In this paper, a noncoherent code tracking loop is designed for 3GPP MODEM and its performance is analyzed in terms of steady-state jitter variance and transient response characteristics. An analytical closed-form formula for steady-state jitter variance is Int derived for AWGN environments as a general function of a pulse-shaping filter, timing offset, signal-to-interference ratio, and loop bandwidth, together with the analysis on the transient response characteristic of a tracking loop. Based on the analysis, the code tracking loop with variable loop bandwidth that is efficient for full digital H/W implementation is designed and its performance is compared with that of the code tracking loop with fixed loop bandwidth, along with the verification by computer simulations.