• Title/Summary/Keyword: closed filter

Search Result 227, Processing Time 0.028 seconds

Design of Quantitative Feedback Control System for the Three Axes Hydraulic Road Simulator (3축 유압 도로 시뮬레이터의 정량적 피드백 제어 시스템 설계)

  • Kim, Jin-Wan;Xuan, Dong-Ji;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.280-289
    • /
    • 2008
  • This paper presents design of the quantitative feedback control system of the three axes hydraulic road simulator with respect to the dummy wheel for uncertain multiple input-output(MIMO) feedback systems. This simulator has the uncertain parameters such as fluid compressibility, fluid leakage, electrical servo components and nonlinear mechanical connections. This works have reproduced the random input signal to implement the real road vibration's data in the lab. The replaced $m^2$ MISO equivalent control systems satisfied the design specifications of the original $m^*m$ MIMO control system and developed the mathematical method using quantitative feedback theory based on schauder's fixed point theorem. This control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) having the minimum bandwidth for parameters of uncertain plant. The efficacy of the designed controller is verified through the dynamic simulation with combined hydraulic model and Adams simulator model. The Matlab simulation results to connect with Adams simulator model show that the proposed control technique works well under uncertain hydraulic plant system. The designed control system has satisfied robust performance with stability bounds, tracking bounds and disturbance. The Hydraulic road simulator consists of the specimen, hydraulic pump, servo valve, hydraulic actuator and its control equipments

Control Strategy Based on Equivalent Fundamental and Odd Harmonic Resonators for Single-Phase DVRs

  • Teng, Guofei;Xiao, Guochun;Hu, Leilei;Lu, Yong;Kafle, Yuba Raj
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.654-663
    • /
    • 2012
  • In this paper, a digital control strategy based on equivalent fundamental and odd harmonic resonators is proposed for single-phase DVRs. By using a delay block, which can be equivalent to a bank of resonators, it rejects the fundamental and odd harmonic disturbances effectively. The structure of the single closed-loop control system consists of a delay block, a proportional gain and a set of zero phase notch filters. The principle of the controller design is discussed in detail to ensure the stability of the system. Both the supply voltage and the load current feedforwards are used to improve the response speed and the ability to eliminate disturbances. The proposed controller is simple in terms of its structure and implementation. It has good performances in harmonic compensation and dynamic response. Experimental results from a 2kW DVR prototype confirm the validity of the design procedure and the effectiveness of the control strategy.

A DSP Implementation of Subband Sound Localization System

  • Park, Kyusik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4E
    • /
    • pp.52-60
    • /
    • 2001
  • This paper describes real time implementation of subband sound localization system on a floating-point DSP TI TMS320C31. The system determines two dimensional location of an active speaker in a closed room environment with real noise presents. The system consists of an two microphone array connected to TI DSP hosted by PC. The implemented sound localization algorithm is Subband CPSP which is an improved version of traditional CPSP (Cross-Power Spectrum Phase) method. The algorithm first split the input speech signal into arbitrary number of subband using subband filter banks and calculate the CPSP in each subband. It then averages out the CPSP results on each subband and compute a source location estimate. The proposed algorithm has an advantage over CPSP such that it minimize the overall estimation error in source location by limiting the specific band dominant noise to that subband. As a result, it makes possible to set up a robust real time sound localization system. For real time simulation, the input speech is captured using two microphone and digitized by the DSP at sampling rate 8192 hz, 16 bit/sample. The source location is then estimated at once per second to satisfy real-time computational constraints. The performance of the proposed system is confirmed by several real time simulation of the speech at a distance of 1m, 2m, 3m with various speech source locations and it shows over 5% accuracy improvement for the source location estimation.

  • PDF

A Study on Prediction of Propulsive Energy Loss Related to Automatic Steering of Ships in Following Seas (추사피중에서 자동조타로써 항행하는 선박의 추진에너지 손실량 평가에 관한 연구)

  • 이경우;손경호
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1996.04a
    • /
    • pp.77-92
    • /
    • 1996
  • When an automatic course-keeping is concerned as is quite popular in modern navigation the closed-loop steering system consists of autopilot device power unit (or telemotor unit) steering gear magnetic or gyro compass and ship dynamics. The consideration of irregular disturbances to ship dyanmics and a few non-linear mechanisms involved in the system inevitably or artificially are known to be very important in properly evaluating or analyzing the automatic steering system. In the present study the mathematical model of each element of an automatic steering system is derived which takes account of a fex non-linear mechanisms. PD(Proportional-Derivative) controller and low-pass filter with a weather adjustment are adopted to modelling the characteristics of an autopilot. The calculation method of imposing irregular disturbances to ship dynamics is proposed where irregular disturbances implying irregular wave and the fluctuating component of wind. For he evaluation of automatic steering system of ships in the open seas an important term "performance index" is introduced from the viewpoint of energy saving which derived from the concept of energy loss on ship propulsion. Finally the present methods are applied to two typical types of ship ; an ore carrier and a fishing boat. The various effects of linear and/or non-linear control constants of autopilot on propulsive energy loss are investigated to validate and clarify the present smulation technique.

  • PDF

Preparation of Low Density Ceramic Supporter from Coal Fly Ash

  • Yeon Hwang;Lee, Hyo-Sook;Lee, Woo-Chul
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.605-609
    • /
    • 2001
  • Low density ceramic supporter was prepared by using fly ash as a starting material for the application to the biological aerated filter (BAF) system, and the effect of additives and sintering atmosphere on the apparent and bulk density of the carrier was examined. Borax, Na$_2$O and glass powders were added to produce liquid phase. The density of the supporter decreased as the amount of borax increased. The bulk density of 0.79 g/㎤ and the apparent density of 1.10 g/㎤ were obtained when the fly ash with 15% of borax was sintered at 116$0^{\circ}C$ for 15 minutes. The density also decreased as the plate glass powders past through 22${\mu}{\textrm}{m}$ size were mixed. When the fly ash with 12% of grass powder was sintered at 128$0^{\circ}C$ for 10 minutes, the bulk and apparent density were 0.90g/㎤ and 1.00 g/㎤, respectively. Apparent density of 1.6~1.8g/㎤ was obtained when the fly ash was sintered at 120$0^{\circ}C$ in a weak reducing atmosphere. By maintaining the reducing atmosphere and sintering at a high heating rate, the liquid phase was farmed from the reduced composition of fly ash. This resulted in the formation of closed pores that enabled the low apparent density.

  • PDF

Active Vibration Control of Clamped Beams Using Filtered Velocity Feedback Controllers (Filtered Velocity Feedback 제어기를 이용한 양단지지보의 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.447-454
    • /
    • 2011
  • This paper reports a filtered velocity feedback(FVF) controller, which is an alternative to direct velocity feedback(DVFB) controller. The instability problems due to high frequency response under DVFB can be alleviated by the suggested FVF controller. The FVF controller is designed to filter out the unstable high frequency response. The FVF controller and the dynamics of clamped beams under forces and moments are first formulated. The effects of the design parameters(cut-off frequency, gain, and damping ratio) on the stability and the performance are then investigated. The cut-off frequency should be selected not to affect the system stability. The magnitude of the open loop transfer function(OLTF) at the cut-off frequency should be small. As increasing the gain of the FVF controller, the magnitude of the OLTF is increased, so that the closed loop response can be reduced more. The enhancement of the OLTF at the cut-off frequency is reduced but the phase behavior around the cut-off frequency is distorted, as the damping ratio is increased. The control performance is finally estimated for the clamped beam. More than 10 dB reductions in velocity response can be achieved at the modal frequencies from the first to eighth modes.

Asymptotic Stabilization of Linear Systems with Time-Varying Input Disturbances Using Disturbance Observer Techniques and Min-Max Control Method (외란관측기법과 최대최소 제어방법을 이용한 시변 입력 외란을 갖는 선형 시스템의 점근 안정화)

  • 송성호;김백섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.15-21
    • /
    • 2004
  • This paper deals with asymptotic stabilization problems for linear systems with time-varying input disturbances. In order to eliminate the influence of a disturbance on the system, a disturbance observer is designed and the time-varying disturbance can be rejected using its estimated value. Since the disturbance observer is kind of low-pass filter, it has inevitably estimation errors. To eliminate the inflences on the performance due to these errors, the additional control is designed based on these estimation errors using a well-known min-max control method. It is shown that the asymptotic stability of the closed-loop system is guaranteed. In general, the min-max control method requires the switching of control inputs and the switching magnitude of the control input is determined by the disturbance estimation error bounds. As the error bounds can be made arbitrarily small by choosing the high gain for the disturbance observer, the control method suggested in this paper can reduce the chattering phenomena as small as possible. Therefore, it has superior performance to the existing ones.

Infiltration Characteristics of Particulate Matter at a Korean Apartment House (국내 아파트의 미세먼지 유입 특성)

  • Joo, SangWoo;Ji, JunHo
    • Particle and aerosol research
    • /
    • v.15 no.4
    • /
    • pp.149-157
    • /
    • 2019
  • Infiltration characteristics of airborne particulate matter had been investigated in real-life for about 90 days over 2 years in a Korean apartment building where a 3-person household had lived and the exclusive private area was 84.9 ㎡. Airtightness was measured by fan depressurization, and the ACH50 was 2.41 times per hour. In and outdoor particle concentrations were measured by optical particle counters. Infiltration factors and filtration efficiencies of the house, which reflect the removal of outdoor particles penetrating building envelope and the deposition inside a building, were obtained from data screened based on an empirical evaluation process. Infiltration factor of fine particles showed a range from about 42% at 0.4 m/s of wind speed to 72% at 4.2 m/s of wind speed with closed windows and doors. Filtration efficiency was like a MERV 13 grade filter with an open window outside at a balcony at low outdoor wind speed under 1 m/s. The grade decreased to MERV 11 by opening another outside window at the other balcony. Filtration efficiencies decreased as much as 29% in average at a range of 0.3~2.5 ㎛.

Calibration of CR-39 for Measurement of Radon in Air (공기중의 라돈 농도 측정을 위한 CR-39의 교정)

  • Park, Y.W.;Chang, S.Y.;Ha, C.W.;Ro, S.G.
    • Journal of Radiation Protection and Research
    • /
    • v.14 no.2
    • /
    • pp.18-22
    • /
    • 1989
  • In order to calibrate the CR-39 Solid State Nuclear Track Detector (SSNTD), a closed -circulation type SSNTD-Calibration-System containing a radon-cup with the Millipore filter has been set-up, and the tracks produced on the SSNTD were measured for the known amount of radon concentration. Calibration factor for the time integrated radon concentration as a function of the track density on CR-39 was estimated to be $0.24{\pm}0.09(pCi/l)\;day/(Tr/cm^2)$.

  • PDF

Design of RCGA-based PID controller for two-input two-output system

  • Lee, Yun-Hyung;Kwon, Seok-Kyung;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1031-1036
    • /
    • 2015
  • Proportional-integral-derivative (PID) controllers are widely used in industrial sites. Most tuning methods for PID controllers use an empirical and experimental approach; thus, the experience and intuition of a designer greatly affect the tuning of the controller. The representative methods include the closed-loop tuning method of Ziegler-Nichols (Z-N), the C-C tuning method, and the Internal Model Control tuning method. There has been considerable research on the tuning of PID controllers for single-input single-output systems but very little for multi-input multi-output systems. It is more difficult to design PID controllers for multi-input multi-output systems than for single-input single-output systems because there are interactive control loops that affect each other. This paper presents a tuning method for the PID controller for a two-input two-output system. The proposed method uses a real-coded genetic algorithm (RCGA) as an optimization tool, which optimizes the PID controller parameters for minimizing the given objective function. Three types of objective functions are selected for the RCGA, and each PID controller parameter is determined accordingly. The performance of the proposed method is compared with that of the Z-N method, and the validity of the proposed method is examined.