• Title/Summary/Keyword: closed boundary layer

Search Result 35, Processing Time 0.025 seconds

Flexure of cross-ply laminated plates using equivalent single layer trigonometric shear deformation theory

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.867-891
    • /
    • 2014
  • An equivalent single layer trigonometric shear deformation theory taking into account transverse shear deformation effect as well as transverse normal strain effect is presented for static flexure of cross-ply laminated composite and sandwich plates. The inplane displacement field uses sinusoidal function in terms of thickness coordinate to include the transverse shear deformation effect. The cosine function in thickness coordinate is used in transverse displacement to include the effect of transverse normal strain. The kinematics of the present theory is much richer than those of the other higher order shear deformation theories, because if the trigonometric term (involving thickness coordinate z) is expanded in power series, the kinematics of higher order theories (which are usually obtained by power series in thickness coordinate z) are implicitly taken into account to good deal of extent. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. The closed-form solutions of simply supported cross-ply laminated composite and sandwich plates have been obtained. The results of present theory are compared with those of the classical plate theory (CPT), first order shear deformation theory (FSDT), higher order shear deformation theory (HSDT) of Reddy and exact three dimensional elasticity theory wherever applicable. The results predicted by present theory are in good agreement with those of higher order shear deformation theory and the elasticity theory.

Uncertainty Assessment of Gas Flow Measurement Using Multi-Point Pitot Tubes (다점 피토관을 이용한 기체 유량 측정의 불확도 평가)

  • Yang, Inyoung;Lee, Bo-Hwa
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.5-10
    • /
    • 2016
  • Gas flow measurement in a closed duct was performed using multi-point Pitot tubes. Measurement uncertainty was assessed for this measurement method. The method was applied for the measurement of air flow into a gas turbine engine in an altitude engine test facility. 46 Pitot tubes, 15 total temperature Kiel probes and 9 static pressure tabs were installed in the engine inlet duct of inner diameter of 264 mm. Five tests were done in an airflow range of 2~10 kg/s. The flow was compressible and the Reynolds numbers were between 450,000 and 2,220,000. The measurement uncertainty was the highest as 6.1% for the lowest flow rate, and lowest as 0.8% for the highest flow rate. This is because the difference between the total and static pressures, which is also related to the flow velocity, becomes almost zero for low flow rate cases. It was found that this measurement method can be used only when the flow velocity is relatively high, e.g., 50 m/s. Static pressure was the most influencing parameter on the flow rate measurement uncertainty. Temperature measurement uncertainty was not very important. Measurement of boundary layer was found to be important for this type of flow rate measurement method. But measurement of flow non-uniformity was not very important provided that the non-uniformity has random behavior in the duct.

Effects of the Length and Diameter of Shock Tube on the Shock Train Phenomenon (충격파관의 길이와 직경이 Shock Train 현상에 미치는 영향)

  • Kim, Dong Wook;Kim, Tae Ho;Yoon, Young Bin;Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.9
    • /
    • pp.615-622
    • /
    • 2017
  • A normal shock wave is initially formed in the shock tube that migrates towards the closed end of the tube, which, in turn, leads to the reflection of shock. Due to the interaction of the reflected shock with the boundary layer, bifurcation of the shock wave takes place. A shock train will be generated after the bifurcated shock wave approaches the contact surface. Until now, only a few studies have been conducted to investigate this shock train phenomenon inside the shock tube. For the present study, a CFD analysis has been performed on a two dimensional axisymmetric model of a shock tube using unsteady, compressible Navier-Stokes equations. In order to investigate the detailed characteristics of the shock train phenomenon, quantitative studies have been performed by varying shock tube length, diameter under fixed diaphragm, and pressure ratio inside a shock tube.

Numerical Solution of Steady Flow and Heat Transfer around a Rotating Circular Cylinder (가열된 회전원주를 지나는 정상유동 및 열전달해석)

  • 부정숙;이종춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3135-3147
    • /
    • 1993
  • A numerical method is presented which can solve the steady flow and heat transfer from a rotating and heated circular cylinder in a uniform flow for a range of Reynolds number form 5 to 100. The steady response of the flow and heat transfer is simulated for various spin parameter. The effects on the flow field and heat transfer characteristics known as lift, drag and heat transfer coefficient are analyzed and the streamlines, velocity vectors, vorticity, temperature distributions around it were scrutinized numerically. As spin parameter increases the region of separation vortex becomes smaller than upper one and the lower region will vanish. The lift force, a large part is due to the pressure force, increases as the Reynolds number and it increases linearly as spin parameter increases. The pressure coefficient changes rapidly with spin parameter on the lower surface of the cylinder and the vorticity is sensitive to the spin parameter near separation region. As spin parameter increases the maximum heat coefficient and the thin thermal layer on front region are moved to direction of rotation. However, with balance between the local increase and decrease, the overal heat transfer coefficient is almost unaffected by rotation.

Wind Tunnel Study on Flow Characteristics around KRISO 300K VLCC Double-body Model (KRISO 300K VLCC 이중모형선의 유동특성에 대한 풍동실험 연구)

  • Hak-Rok Kim;Sang-Joon Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.15-21
    • /
    • 1999
  • The flow characteristics around KRISO 300K VLCC double-body model have been experimentally investigated in a closed-type subsonic wind tunnel. The local mean velocity and turbulence statistics including turbulent intensity. Reynolds shear stress and turbulent kinetic energy were measured using a x-type hot-wire probe. The measurements were carried out at several transverse stations of the stern and near wake regions. The surface flow was visualized using on oil-film technique to see the flow pattern qualitatively. The flow in the stern and near wake region revealed complicated three-dimensional flow characteristics. The VLCC model shows a hook-shaped wake structure behind the propeller boss in the main longitudinal vortex region. The thin boundary layer at midship was increased gradually in thickness over the stern and evolved into a full three-dimensional turbulent wake.

  • PDF

Numerical Analysis of Supersonic Axisymmetric Screech Tone Noise Using Optimized High-Order, High-Resolution Compact Scheme (최적회된 고차-고해상도 집적 유한 차분법을 이용한 초음속 제트 스크리치 톤 수치 해석)

  • Lee, In-Cheol;Lee, Duck-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.1E
    • /
    • pp.32-35
    • /
    • 2006
  • The screech tone of underexpanded jet is numerically calculated without any specific modeling for the screech tone itself. Fourth-order optimized compact scheme and fourth-order Runge-Kutta method are used to solve the 2D axisymmetric Euler equation. Adaptive nonlinear artificial dissipation model and generalized characteristic boundary condition are also used. The screech tone, generated by a closed loop between instability waves and quasi-periodic shock cells at the near field, is reasonably analyzed with present numerical methods for the underexpanded jet having Mach number 1.13. First of all, the centerline mean pressure distribution is calculated and compared with experimental and other numerical results. The instantaneous density contour plot shows Mach waves due to mixing layer convecting supersonically, which propagate downstream. The pressure signal and its Fourier transform at upstream and downstream shows the directivity pattern of screech tone very clearly. Most of all, we can simulate the axisymmetric mode change of screech tone very precisely with present method. It can be concluded that the basic phenomenon of screech tone including the frequency can be calculated by using high-order and high-resolution schemes without any specific numerical modeling for screech tone feedback loop.

PowerFLOW Simulation of the Hyundai Simple Model for Sunroof Buffeting (HSM의 썬루프 버페팅을 위한 PowerFLOW 해석)

  • Choi, Eui-Sung;Cyr, Stephane
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.189-197
    • /
    • 2014
  • A simplified model in the shape of a wedge box with an opening on the roof was used to generate buffeting conditions at HMC. These measurements performed in controlled conditions are intended to validate the ability of CFD tools to predict buffeting. The results obtained by PowerFLOW are presented in this paper for buffeting and for the boundary layer development on the roof of the model when the roof opening is closed. The flow mechanisms that explain the behavior of the experimental sound pressure level(SPL) curve are described, and an improved setup is used to reproduce the flow structures that lead to the measured SPL.

Wind tunnel investigation on flutter and buffeting of a three-tower suspension bridge

  • Zhang, Wen-ming;Ge, Yao-jun
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.367-384
    • /
    • 2017
  • The Maanshan Bridge over Yangtze River in China is a new long-span suspension bridge with double main spans of $2{\times}1080m$ and a closed streamline cross-section of single box deck. The flutter and buffeting performances were investigated via wind tunnel tests of a full bridge aeroelastic model at a geometric scale of 1:211. The tests were conducted in both smooth wind and simulated boundary layer wind fields. Emphasis is placed on studying the interference effect of adjacent span via installing a wind deflector and a wind separating board to shelter one span of the bridge model from incoming flow. Issues related to effects of mid-tower stiffness and deck supporting conditions are also discussed. The testing results show that flutter critical wind velocities in smooth flow, with a wind deflector, are remarkably lower than those without. In turbulent wind, torsional and vertical standard deviations for the deck responses at midspan in testing cases without wind deflector are generally less than those at the midspan exposed to wind in testing cases with wind deflector, respectively. When double main spans are exposed to turbulent wind, the existence of either span is a mass damper to the other. Furthermore, both effects of mid-tower stiffness and deck supporting conditions at the middle tower on the flutter and buffeting performances of the Maanshan Bridge are unremarkable.

Axisymmetric vibration analysis of a sandwich porous plate in thermal environment rested on Kerr foundation

  • Zhang, Zhe;Yang, Qijian;Jin, Cong
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.581-601
    • /
    • 2022
  • The main objective of this research work is to investigate the free vibration behavior of annular sandwich plates resting on the Kerr foundation at thermal conditions. This sandwich configuration is composed of two FGM face sheets as coating layer and a porous GPLRC (GPL reinforced composite) core. It is supposed that the GPL nanofillers and the porosity coefficient vary continuously along the core thickness direction. To model closed-cell FG porous material reinforced with GPLs, Halpin-Tsai micromechanical modeling in conjunction with Gaussian-Random field scheme is used, while the Poisson's ratio and density are computed by the rule of mixtures. Besides, the material properties of two FGM face sheets change continuously through the thickness according to the power-law distribution. To capture fundamental frequencies of the annular sandwich plate resting on the Kerr foundation in a thermal environment, the analysis procedure is with the aid of Reddy's shear-deformation plate theory based high-order shear deformation plate theory (HSDT) to derive and solve the equations of motion and boundary conditions. The governing equations together with related boundary conditions are discretized using the generalized differential quadrature (GDQ) method in the spatial domain. Numerical results are compared with those published in the literature to examine the accuracy and validity of the present approach. A parametric solution for temperature variation across the thickness of the sandwich plate is employed taking into account the thermal conductivity, the inhomogeneity parameter, and the sandwich schemes. The numerical results indicate the influence of volume fraction index, GPLs volume fraction, porosity coefficient, three independent coefficients of Kerr elastic foundation, and temperature difference on the free vibration behavior of annular sandwich plate. This study provides essential information to engineers seeking innovative ways to promote composite structures in a practical way.

Application of Non-hydrostatic Free Surface Model for Three-Dimensional Viscous Flows (비정수압 자유수면 모형의 3차원 점성 흐름에의 적용)

  • Choi, Doo-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.4
    • /
    • pp.349-360
    • /
    • 2012
  • A horizontally curvilinear non-hydrostatic free surface model that was applicable to three-dimensional viscous flows was developed. The proposed model employed a top-layer equation to close kinematic free-surface boundary condition, and an isotropic k-${\varepsilon}$ model to close turbulence viscosity in the Reynolds averaged Navier-Stokes equation. The model solved the governing equations with a fractional step method, which solved intermediate velocities in the advection-diffusion step, and corrects these provisional velocities by accounting for source terms including pressure gradient and gravity acceleration. Numerical applications were implemented to the wind-driven currents in a two-dimensional closed basin, the flow in a steep-sided trench, and the flow in a strongly-curved channel accounting for secondary current by the centrifugal force. Through the numerical simulations, the model showed its capability that were in good agreement with experimental data with respect to free surface elevation, velocity, and turbulence characteristics.