• Title/Summary/Keyword: cloning of pcbC

Search Result 9, Processing Time 0.021 seconds

Cloning of pcb Genes in Pseudomonas sp.P20 Specifying Degradation of 4-Clorobiphenyl (4-Chlorobiphenyl을 분해하는 Pseudomonas sp. P20의 pcb 유전자군의 클로닝)

  • 남정현;김치경
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.4
    • /
    • pp.353-359
    • /
    • 1994
  • Pseudomonas sp. P20 was a bacterial isolate which has the ability to degrade 4-chlorobi- phenyl(4CB) to 4-chlorobenzoic acid via the process of meta-cleavage. The recombinant plasmid pCK1 was constructed by insetting the 14-kb EcoRI fragment of the chromosomal DNA containing the 4CB-degrading genes into the vector pBluescript SK(+). Subsequently, E. coli XL1-Blue was transformed with the hybrid plasmid producing the recombinant E. coli CK1. The recombinant cells degraded 4CB and 2,3-dihydroxybiphenyl(2,3-DHBP) by the pcbAB and pcbCD gene products, respectively. The pcbC gene was expressed most abundantly at the late exponential phase in E. coli CK1 as well as in Pseudomonas sp. P20, and the level of the pcbC gene product, 2,3-DHBP dioxygenase, expressed in E. coli CK1 was about two-times higher than in Pseudomonas sp. P20. The activities of 2,3-DHBP dioxygenase on catechol and 3-methylcatechol were about 26 to 31% of its activity on 2,3-DHBP, but the enzyme did not reveal any activities on 4-methylcatechol and 4-chlorocatechol.

  • PDF

Cloning and Expression of pcbC and pcbD Genes Responsible for 2,3-Dihydroxybiphenyl Degradation from Pseudomonas sp. P20

  • Nam, Jung-Hyun;Oh, Hee-Mock;Kim, Chi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.68-73
    • /
    • 1995
  • Pseudomonas sp. P20 was shown to be capable of degrading biphenyl and 4-chlorobiphenyl (4CB) to produce the corresponding benzoic acids wnich were not further degraded. But the potential of the strain for biodegradation of 4CB was shown to be excellent. The pcbA, B, C and D genes responsible for the aromatic ring-cleavage of biphenyl and 4CB degradation were cloned from the chromosomal DNA of the strain. In this study, the pebC and D genes specifying degradation of 2, 3-dihydroxybiphenyl (2, 3-DHBP) produced from biphenyl by the pebAB-encoded enzymes were cloned by using pBluescript SK(+) as a vector. From the pCK102 (9.3 kb) containing pebC and D genes, pCK1022 inserted with a EcoRI-HindIII DNA fragment (4.1 kb) carrying pebC and D and a pCK1092 inserted with EcoRI-XbaI fragment (1.95 kb) carrying pebC were constructed. The expression of pcbC and D' in E. coli CK102 and pebC in E. coli CK1092 was examined by gas chromatography and UV-vis spectrophotometry. 2.3-dihydroxybiphenyl was readily degraded to produce meta-cleavage product (MCP) by E. coli CK102 after incubation for 10 min, and then only benzoic acid(BA) was detected in the 24-h old culture. The MCP was detected in E. coli CK1022 containing pebC and 0 genes (by the resting cells assay) for up to 3 h after incubation and then diminished completely in 8 h, whereas the MCP accumulated in the E. coli CK1092 culture even after 6 h of incubation. The 2, 3-DHBP dioxygenases (product of pebC gene) produced by E. coli CK1, CK102, CK1023, and CK1092 strains were measured by native PAGE analysis to be about 250 kDa in molecular weight, which were about same as those of Pseudomonas sp. DJ-12, P. pseudoa1caligenes KF707, and P. putida OU83.

  • PDF

Cloning and Expression of pcbCD Genes in Escherichia coli from Pseudomonas sp. DJ-12 (Pseudomonas sp. DJ-12의 pcbCD 유전자의 클로닝과 Escherichia coli에서의 발현)

  • Kim, Chi-Kyung;Sung, Tae-Kyung;Nam, Jung-Hyun;Kim, Chang-Young;Lee, Jae-Koo
    • Korean Journal of Microbiology
    • /
    • v.32 no.1
    • /
    • pp.40-46
    • /
    • 1994
  • The pcb genes of Pseudomonas sp. DJ-12 coded for the catabolism of polychlorinated biphenyl (PCBs) and biphenyl. The products of the pcbCD genes were 2,3-dihydroxy-4'-chlorobiphenyl dioxygenase and meta-cleavage product (MCP) hydrolase, which acted on degradation of 2,3-dihydroxy-4'-chlorobiphenyl to 4-chlorobenzoate. The pcbCD genes were cloned in E. coli XLl-Blue, and then the pcbD gene was further subcloned. As a metabolite transformed from 2,3-dihydroxybiphenyl by the cloned cell of E coli CU103, benzoate was detected by the resting cell assay. The enzyme activities of 2,3-dihydroxybiphenyl dioxygease and MCP hydrolase produced in the cloned cells E. coli CU103 and CU105 were about 17 and 3 times higher than those of Pseudomonas sp. DJ-12, respectively.

  • PDF

Reidentification of Comamonas sp. Strain DJ-12 and Analysis of its pcbABC2D2 Genes Responsible for Degradation of 4-Chlorobiphenyl. (Comamonas sp. Strain DJ-12 의 재동정 및 4-Chlorobiphenyl 분해유전자 pcbABC2D2 의 분석)

  • 이준훈;박동우;강철희;채종찬;이동훈;김치경
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.121-126
    • /
    • 2004
  • Comamonas sp. strain DJ-12 is a 4-chlobiphenyl(4CB)-degrading bacterium that was reidentified from Pseudomonas sp. DJ-12. The genomic DNA was isolated from the strain DJ-12 and amplified by PCR with primers for cloning pcbABCD genes responsible for degradation of 4CB. The amino acid sequences deduced from the nucleotide sequences of pcbA1, pcbA2, pcbA3, pcbA4, pcbB, pcbC2, and pcbD2 genes showed 91, 87, 99, 87, 97, 90 and 87% homologies with those of Pseudomonas sp. KKS102, respectively. The pcbC1D1 genes that are involved in the degradation of (4-chloro)1,2-dihydroxybiphenyl produced from 4CB by pcbAB gene products were previously reported in the recombinant plasmid pCU1 from Pseudomonas sp. DJ-12. However, the pcbC2D2 genes in the plasmid pCT4 and pCT5 cloned from Comamonas sp. DJ-12 in this study showed 51 and 62% homologies with those of pcbC1D1 in their nucleotide sequences. The pcbC1D1 and pcbC2D2 genes were found by Southern hybridization to be located at different loci on the chromosome of DJ-12 strain. These results indicate that Comamonas sp. strain DJ-12 has two different sets of pcbCD genes responsible for deg-radation of (4-chloro)1,2-dihydroxybiphenyl.

pKT230 벡터를 이용한 Pseudomonas sp. P20의 2,3-Dihydroxybiphenyl Dioxygenase 유전자의 클로닝

  • Kim, Ji-Young;Kim, Chi-Kyung;Ka, Jong-Ok;Min, Kyung-Hee;Park, Yong-Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.6
    • /
    • pp.657-663
    • /
    • 1996
  • Pseudomonas sp. P20 isolated from the polluted environment is capable of degrading biphenyl and 4-chlorobiphenyl. The pcbABCD genes responsible for degradation of biphenyl and 4-chlorobiphenyl were cloned using pBluescript SK(+) from the chromosomal DNA of Pseudomonas sp. P20 to construct pCK1 and pCK102, harbouring pcbABCD and pcbCD, respectively. The 2, 3-DHBP dioxygenase gene, pcbC, was cloned again from pCK102 by using pKT230 which is known as a shuttle vector and pKK1 hybrid plasmid was constructed. The E. coli KK1 transformant obtained by transforming the pKK1 into E. coli XL1-Blue showed 2, 3-DHBP dioxygenase activity. The specific 2, 3-DHBP dioxygenase activity of E. coli KK1 was similar to that of the E. coli CK102, but much higher than those of the natural isolates, Pseudomonas sp. DJ-12 and Pseudomonas sp. P20.

  • PDF

Improvement of 4-chlorobiphenyl degradation bya recombinant strain, pseudomonas sp. DJ12-C

  • Kim, Ji-Young;Kim, Young-Chang;You, Lim-Jai;Lee, Ki-Sung;Ok, Ka-Jong;Hee, Min-Kyung;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.53-60
    • /
    • 1997
  • Pseudomonas sp. P20 and Pseudomonas sp. DJ-12 isolated from the polluted environment are capable of degrading biphenyl and 4-chlorobiphenyl (4CB) to produce benzoic acid and 4-chlorobenzoic acid (4CBA) respectively, by pcbABCD-encoded enzymes. 4CBA can be further degraded by Pseudomonas sp. DJ-12, but not by Pseudomonas sp P20. However, the meta-cleavage activities of 2, 3-dihydroxybiphenyl (2, 3-DHBP) and 4-chloro-2, 3-DHBP dioxygenases (2, 3-DHBD) encoded by pcbC in Pseudomonas sp. P20 were stronger than Pseudomonas sp. DJ-12. In this study, the pcbC gene encoding 2, 3-DHBD was cloned from the genomic DNA of Pseudomonas sp. P20 by using pKT230. A hybrid plasmid pKK1 was constructed and E. coli KK1 transformant was selected by transforming the pKK1 hybrid plasmid carrying pcbC into E. coli XL1-Blue. By transferring the pKK1 plasmide of E. coli KK1 into Pseudomonas sp. DJ-12 by conjugation, a recombinant strain Pseudomonas sp. P20, Pseudomonas sp. DJ-12, and the recombinant cell assay methods. Pseudomonas sp. DJ12-C readily degraded 4CB and 2, 3-DHBP to produce 2-hydroxy-6-oxo-6-phenylhexa-2, 4-dienoic acid (HOPDA), and the resulting 4CBA and benzoic acid were continuously catabolized. Pseudomonas sp. DJ12-C degraded 1 mM 4CB completely after incubation for 20 h, but Pseudomonas sp. P20 and Pseudomonas sp. DJ-12 showed only 90% and Pseudomonas sp. DJ-12 had, but its degradation activity to 2, 3-DHBP, 3-methylcatechol, and catechol was improved.

  • PDF

Cloning and Phylogenetic Analysis of Two Different bphC Genes and bphD Gene From PCB-Degrading Bacterium, Pseudomonas sp. Strain SY5

  • Na, Kyung-Su;Kim, Seong-Jun;Kubo, Motoki;Chung, Seon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.668-676
    • /
    • 2001
  • Pseudomonas sp. strain SY5 is a PCB-degrading bacterium [24] that includes two different enzymes (BphC1 and BphC2) encoding 2,3-dihdroxybiphenyl 1,2-dioxygenase and BphD encoding 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase. The bphC1 and bphC2 genes were found to consist of 897 based encoding 299 amino acids and 882 bases encoding 294 amino acids, respectively, whereas the bphD gene consisted of 861 bases encoding 287 amino acids. According to a homology search, a 50% and 39% similarity between the bphC1 and bphC2 genes at the nucleotide and amino acid level was shown, respectively. The bphC1 gene showed a 38% and 45% similarity at the amino acid level to Alcaligenes eutrophus A5 and Rhodococcus rhodochrous, respectively, whereas, bphC2 showed a 95% and 43% similarity, respectively. A comparison of the deduced amino acid sequence of the bphD product of Pseudomonas sp. SY5 with that of A. eutrophus A5, Pseudomons sp. KKS102, and LB400 showed a sequence identity of 92, 92, and 79%, respectively. Strain SY5 was originally isolated from municipal sewage containing recalcitrant organic compounds an found to have a high degradability of various aromatic compounds [23]. The current study found that strain SY5 had two extradiol-type dioxygenases, which did not hybridize with each other as they had a low similarity, yet a similar structure of evolutionarily conserved amino acids residues for catalytic activity between BphC1 and BphC2 was observed.

  • PDF

Production of Monoclonal Antibody to Polychlorinated Biphenyl Induced Cytochrome P-450 LMII in Rat Liver (Polychlorinated Biphenyl에 의한 백서간 Cytochrome P-$450_{LMII}$에 대한 Monoclonal Antibody 생성에 관한 연구)

  • Kim, Jung-Hye;Kim, Jae-Ryong;Lee, Ki-Yung
    • Journal of Yeungnam Medical Science
    • /
    • v.3 no.1
    • /
    • pp.103-110
    • /
    • 1986
  • Cytochrome P-450(CP-450) is one of the three components of the liver microsomal enzyme system which hydroxylates fatty acids, hydrocarbons and a variety of drugs and other foreign compounds. Female Balb/c mice were immunized with purified polychlorinated bipheny(PCB)-induced CP-450 LMII. The spleen cells derived from immunized mice were fused with $SP^2$ myeloma cells using polyethylene glycol(PEG 3500). The hybrid cells were selected by hypoxanthine-aminopterine and thymidine(HAT) medium and the culture fluid were screened by enzyme-linked immunosorbent assay to CP450 LMII. The hybrid cess(${\times}10^7$) were innoculated into intraperitoneal cavity of Balb/c mice for the purpose of production of ascitic fluids. Monoclonal antibody(Mab) was purified from ascitic fluid by DEAE cellulose ion exchange chromatography and $I^{125}$-labeled Mab was also confirmed by autoradiography and SDS-polyacrylamide gel electrophoresis (MW : 55,000 and 110,000).

  • PDF

Effect of Temperature on Persistence of Recombinant Plasmid pCU103 in Different Waters

  • Kwak, Myong-Ja;Kim, Chi-Kyung;Kim, Young-Chang;Lim, Jai-Yun;Kim, Young-Soo;Lee, Ki-Sung;Min, Kyung-Hee
    • Journal of Microbiology
    • /
    • v.33 no.3
    • /
    • pp.178-183
    • /
    • 1995
  • The recombinant plasmid of pCU103 constructed by cloning pcbCD genes in pBluescript SK(+) was studied for the effect of temperature on its persistence in different waters by the methods of electrophoresis, Southern hybridization, quantification, and transformation. The plasmid was very rapidly degraded out in non-sterile FW water without regards to water temperature, probably due to the effect of biochemical factor such as nucleases. The pCU103 was most persistent at 4$^{\circ}C$ in any water environments, moderately persistant at 15$^{\circ}C$ but least stable at 3$0^{\circ}C$ such results could be explained by the facts that hydrogen bonds in double-stranded plasmid DNAs become unstable and that nucleases are activated by increasing temperature. The intact structure of pCU1-3 was generally observed by gel electrophoresis under the conditions which the plasmid should be 2.0 ng/$\mu\textrm{l}$ or higher in concentration and that about 10$^2$ CFU/ml or more transformant cells should be recovered.

  • PDF