• Title/Summary/Keyword: cloned embryo

Search Result 168, Processing Time 0.034 seconds

Application of the modified handmade cloning technique to pigs

  • Lee, Eun Ji;Ji, Kuk Bin;Lee, Ji Hye;Oh, Hyun Ju;Kil, Tae Young;Kim, Min Kyu
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.281-294
    • /
    • 2021
  • Although somatic cell nuclear transfer (SCNT) is frequently employed to produce cloned animals in laboratories, this technique is expensive and inefficient. Therefore, the handmade cloning (HMC) technique has been suggested to simplify and advance the cloning process, however, HMC wastes many oocytes and leads to mitochondrial heteroplasmy. To solve these problems, we propose a modified handmade cloning (mHMC) technique that uses simple laboratory equipment, i.e., a Pasteur pipette and an alcohol lamp, applying it to porcine embryo cloning. To validate the application of mHMC to pig cloning, embryos produced through SCNT and mHMC are compared using multiple methods, such as enucleation efficiency, oxidative stress, embryo developmental competence, and gene expression. The results show no significant differences between techniques except in the enucleation efficiency. The 8-cell and 16-cell embryo developmental competence and Oct4 expression levels exhibit significant differences. However, the blastocyst rate is not significantly different between mHMC and SCNT. This study verifies that cloned embryos derived from the two techniques exhibit similar generation and developmental competence. Thus, we suggest that mHMC could replace SCNT for simpler and cheaper porcine cloning.

Analysis of Growth and Hematologic Characteristics of Cloned Puppies (체세포 복제 자견의 성장 및 혈액학적 특성 분석)

  • Kim, Dong-Hoon;Choi, Mi-Kyung;No, Jin-Gu;Park, Jong-Ju;Yeom, Dong-Hyeon;Kim, Hyun-Min;Choi, Bong-Hwan;Kim, Dong-Kyo;Park, Jin-Ki;Yoo, Jae Gyu
    • Journal of Embryo Transfer
    • /
    • v.28 no.3
    • /
    • pp.229-235
    • /
    • 2013
  • The objective of this study was to monitor health conditions of four genetically identical somatic cells cloned Labrador retriever puppies by estimation of body weight and analysis of hematologic and serologic characteristics. Naturally ovulated oocytes and donor cells were used for somatic cell nuclear transfer (SCNT). Donor cells and enucleated oocytes were followed by electric fusion, chemical activation and surgical embryo transfer into the oviducts of surrogate females. Two recipients became pregnant; two maintained pregnancy to term, and four live puppies were delivered by Caesarean section. The cloned Labrador retrievers were genetically identical to the nuclear donor dog. The body weight of clone-1, -2, -3, and -4 was increased from 0.66, 0.40, 0.39, and 0.37 kg at birth to 6.2, 6.6, 6.2, and 6.0 kg at 8 weeks of age, respectively. Although clone-4 had lower numbers of RBC than reference range, the most of RBC and WBC related heamatologic results of cloned puppies were not different when compared to reference range. In serological analysis, Glucose, ALP and inorganic phosphate level of four cloned puppies was significantly higher than the reference ranges. However, there was no significant difference among four cloned dogs. This study suggests that cloned puppies derived from SCNT did not have remarkable health problems, at least in the growth pattern and hematological and serological parameters.

Reproductivity of Cloned Male Cat

  • Choi, E.G.;Lee, H.S.;Yin, X.J.;Oh, J.H.;Cho, E.M.;Kang, S.H.;Bae, I.H.;Cho, S.K.;Kong, I.K.
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2005.10a
    • /
    • pp.129-129
    • /
    • 2005
  • PDF

Physiological Evaluation of Cloned Mini-pigs in a Transportable Isolator for the Study of Xenotransplantation (바이오장기 연구를 위한 이동식 아이솔레이터 내 복제 미니 돼지의 생리 활성 평가)

  • Kim, Hae-Sung;Jeon, Yu-Byeol;Kwak, Seong-Sung;Jeong, Seung-A;Jung, Eui-Man;Hyun, Sang-Hwan;Jeung, Eui-Bae
    • Journal of Embryo Transfer
    • /
    • v.26 no.3
    • /
    • pp.165-169
    • /
    • 2011
  • The present study investigated the physiological evaluation of cloned mini-pigs in a transportable isolator. Transportable isolator was designed and manufactured by our research team for transporting gnotobiotic pig. Until now, no previous reports are available regarding the physiological activities and harmful effects when pigs were transported in this isolator. Five cloned mini-pigs of 1~2 year (s) old female with a body weight between 80~90 kg were used. The effects of transportable isolator on stress-related hormone, adrenocorticotrophic hormone (ACTH) and cortisol levels, and heart rate were evaluated. In addition, it was also examined the effects of transportable isolator on blood chemistry factors (alanine aminotransferase: ALT, aspartate aminotransferase: AST, blood urea nitrogen: BUN, glucose, and creatinine). Blood was sampled just before the beginning of transport (T0), at the end of transport (30min after the transport; T1), and 30 min after the end of transport (T2). At the same time, heart rate was also evaluated. As a result, heart rate had no significant (p>0.05) differences at the various-time points of study (T0, T1, T2). However, heart rate was slightly higher than normal range in T1 and T2. The ACTH level was higher than normal range. Whereas, the cortisol level was lower than normal range. There were no statistical significant differences both ACTH and cortisol level between different time groups. Also, there were no significant differences in blood chemistry factors. Therefore, our present study shows that transportable isolator has no harmful effect on stress and physiological condition in cloned mini-pigs.

Phosphorylation Status of RNA Polymerase II Carboxyl-terminal Domain in Porcine Oocytes and Early Embryos

  • Oqani, Reza K.;Zhang, Jin Yu;Lee, Min-Gu;Diao, Yun Fei;Jin, Dong-Il
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.789-793
    • /
    • 2012
  • Fertilization of the oocyte commences embryogenesis during which maternally inherited mRNAs are degraded and the embryonic genome is activated. Transcription of embryonic mRNA is initiated by embryonic genome activation (EGA). RNA polymerase II (RNA Pol II) is responsible for the synthesis of mRNAs and most small nuclear RNAs, and consists of 12 subunits, the largest of which characteristically harbors a unique C-terminal domain (CTD). Transcriptional activity of RNA Pol II is highly regulated, in particular, by phosphorylation of serine residues in the CTD. Here, we have shown the presence of RNA Pol II CTD phosphoisoforms in porcine oocytes and preimplantation embryos. The distribution pattern as well as phosphorylation dynamics in germinal vesicles and during embryogenesis differed in developmental stages with these isoforms, indicating a role of RNA Pol II CTD phosphorylation at the serine residue in transcriptional activation during both oocyte growth and embryonic genome activation. We additionally examined the effects of the RNA Pol II inhibitor, ${\alpha}$-amanitin, on embryo development. Our results show that inhibition of polymerase, even at very early stages and for a short period of time, dramatically impaired blastocyst formation. These findings collectively suggest that the functionality of maternal RNA Pol II, and consequently, expression of early genes regulated by this enzyme are essential for proper embryo development.

Studies on Nuclear Transplantation in Mouse Embryos III. Production of Cloned Mice from 2nd Generation Nuclear Transplant Embryos (생쥐 수정란의 핵이식에 관한 연구 III. 제2세대 핵이식에 의한 복제생쥐의 생산)

  • 박충생;최상용;이효종;박희성;박성재
    • Journal of Embryo Transfer
    • /
    • v.8 no.1
    • /
    • pp.9-12
    • /
    • 1993
  • 포유동물의 초기 발생단계에서 핵의 분화와 전능성을 규명하고 제2세대 핵이시 기법을 개발하고자 생쥐를 모델로 하여 공핵란은 2-세포기에 있는 수정란의 핵을 사용하였으며, 수핵란은 zygote 및 2-세포기에 있는 수정란을 탈핵하여 제2세대 핵이식을 실시하여 electrofusion system으로 핵융합을 실시하고 cloned embryo를 작출하여 이를 24-48시간동안 체외에서 배양을 시킨 다음 위임신이 유기된 수란생쥐의 난관에 체내 이식을 실시하여 개체로의 발생 여부 등을 조사하였다. 핵이식후의 융합율은 zygote 및 2-세포기의 수정란을 수핵란으로 사용하였을 때 각각 84.7 및 84.0%으로서 차이가 없었으며, 제1세대의 86.8 마ㅊ 85.4%로서 세대간에 차이가 없었다. 4-세포기 이상으로 발달한 제2세대 핵이식 수정란의 체외배양율은 수핵란을 zygote 및 2-세포기 수정란을 사용하였을때 각각 36.2 및 43.7%로서 제1세대 핵이식의 44.3 및 50.4% 보다는 다소 낮았다. 제2세대 핵이식 수정라늘 위임신이 유기된 수란생쥐의 난관에 이식을 실시하여 얻은 산자생산율은 수핵란을 zygote 및 2-세포기 수정란을 사용하였을때 각각 23.0 및 25.0%로서 모두 25마리의 산자를 생산하였다.

  • PDF

Cloning Livestock from Cultured Cells Creates New Opportunities for Agriculture

  • Wells, D.N.
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2003.10a
    • /
    • pp.29-48
    • /
    • 2003
  • It is remarkable that nuclear transfer using differentiated donor cells can produce physiologically normal cloned animals, but the process is inefficient and highly prone to epigenetic errors. Aberrant patterns of gene expression in clones contribute to the cumulative losses and abnormal phenotypes observed throughout development. Any long lasting effects from cloning, as revealed in some mouse studies, need to be comprehensively evaluated in cloned livestock. These issues raise animal welfare concerns that currently limit the acceptability and applicability of the technology. It is expected that improved reprogramming of the donor genome will increase cloning efficiencies realising a wide range of new agricultural and medical opportunities. Efficient cloning potentially enables rapid dissemination of elite genotypes from nucleus herds to commercial producers. Initial commercialisation will, however, focus on producing small numbers of high value animals for natural breeding especially clones of progeny-tested sires. The continual advances in animal genomics towards the identification of genes that influence livestock production traits and human health increase the ability to genetically modify animals to enhance agricultural efficiency and produce superior quality food and biomedical products for niche markets. The potential opportunities inanimal agriculture are more challenging than those in biomedicine as they require greater biological efficiency at reduced cost to be economically viable and because of the more difficult consumer acceptance issues. Nevertheless, cloning and transgenesis are being used together to increase the genetic merit of livestock; however, the integration of this technology into farming systems remains some distance in the future.

  • PDF

Effects of human chorionic gonadotropin-producing peripheral blood mononuclear cells on the endometrial receptivity and implantation sites of the mouse uterus

  • Delsuz Rezaee;Mojgan Bandehpour;Bahram Kazemi;Sara Hosseini;Zeinab Dehghan;Saiyad Bastaminejad;Mohammad Salehi
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.49 no.4
    • /
    • pp.248-258
    • /
    • 2022
  • Objective: This research investigated the effects of human chorionic gonadotropin (HCG)-producing peripheral blood mononuclear cells (PBMCs) on the implantation rate and embryo attachment in mice. Methods: In this experimental study, a DNA fragment of the HCG gene was cloned into an expression vector, which was transfected into PBMCs. The concentration of the produced HCG was measured using enzyme-linked immunosorbent assay. Embryo attachment was investigated on the co-cultured endometrial cells and PBMCs in vitro. As an in vivo experiment, intrauterine administration of PBMCs was done in plaque-positive female mice. Studied mice were distributed into five groups: control, embryo implantation dysfunction (EID), EID with produced HCG, EID with PBMCs, and EID with HCG-producing PBMCs. Uterine horns were excised to characterize the number of implantation sites and pregnancy rate on day 7.5 post-coitum. During an implantation window, the mRNA expression of genes was evaluated using real-time polymerase chain reaction. Results: DNA fragments were cloned between the BamHI and EcoRI sites in the vector. About 465 pg/mL of HCG was produced in the transfected PBMCs. The attachment rate, pregnancy rate, and the number of implantation sites were substantially higher in the HCG-producing PBMCs group than in the other groups. Significantly elevated expression of the target genes was observed in the EID with HCG-producing PBMCs group. Conclusion: Alterations in gene expression following the intrauterine injection of HCG-producing PBMCs, could be considered a possible cause of increased embryo attachment rate, pregnancy rate, and the number of implantation sites.