Domain analysis is the process of analyzing related software systems in a domain to find their common and variable parts. In the case of device drivers, they are highly suitable for domain analysis because device drivers of the same domain are implemented similarly for each device and each system that they support. Considering this characteristic, this paper introduces a new approach to the domain analysis of device drivers. Our method uses a code clone detection technique to extract similarity among device drivers of the same domain. To examine the applicability of our method, we investigated whole device drivers of a Linux source. Results showed that many reusable similar codes can be discerned by the code clone detection method. We also investigated if our method is applicable to other kernel sources. However, the results show that the code clone detection method is not useful for the domain analysis of all kernel sources. That is, the applicability of the code clone detection method to domain analysis is a peculiar feature of device drivers.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권5호
/
pp.1932-1950
/
2018
The paper proposes a code-clone detection method that gives the highest possible precision and recall, without giving much attention to efficiency and scalability. The goal is to automatically create a reliable reference corpus that can be used as a basis for evaluating the precision and recall of clone detection tools. The algorithm takes an abstract-syntax-tree representation of source code and thoroughly examines every possible pair of all duplicate tree patterns in the tree, while avoiding unnecessary and duplicated comparisons wherever possible. The largest possible duplicate patterns are then collected in the set of pattern clusters that are used to identify code clones. The method is implemented and evaluated for a standard set of open-source Java applications. The experimental result shows very high precision and recall. False-negative clones missed by our method are all non-contiguous clones. Finally, the concept of neighbor patterns, which can be used to improve recall by detecting non-contiguous clones and intertwined clones, is proposed.
컨테이너 보안 장치(CSD)는 컨테이너의 문 안에 장착되어 센서를 통해 컨테이너의 문이 비정상적으로 열리는 것을 탐지하는 장치다. 이러한 CSD 장치는 컨테이너의 보안성을 제공하는 장치이기 때문에 도청이나 위조와 같은 공격에 안전해야할 뿐만 아니라 복제 되어서도 안된다. 만약 복제된 CSD를 탐지할 수 없다면, CSD는 공격자에 의해 불법적으로 복제되어 정상적인 목적과는 다른 용도로 사용되어 질 수 있다. 본 논문에서는 이러한 복제된 CSD를 탐지하기 위한 정책 기반 복제 탐지 메커니즘을 제안한다. 또한 실제 구현 결과를 통해 제안하는 기법을 검증 및 평가한다.
기계 학습을 이용하여 의미가 유사한 코드 클론을 탐지하는 도구의 성능 평가에 빅클론벤치를 많이 활용한다. 하지만 빅클론벤치는 기계 학습에 최적화된 벤치마크가 아니기 때문에 그대로 기계 학습에 사용하면 잘못된 학습 데이터가 만들어질 수 있다. 본 연구에서는 빅클론벤치에서 제공하고 있는 코드 클론 데이터에서 누락된 타입-4 클론을 기계 학습을 이용하여 추가로 찾아 보완함으로써 빅클론벤치를 개선할 수 있음을 실험적으로 밝힌다. 트리 기반 컨볼루션 신경망을 이용한 기계 학습 모델을 사용해서 개선된 데이터를 학습했을 때, 기존의 데이터를 학습했을 때에 비해 기계 학습의 정확도 및 성능이 향상되었음을 확인하였다.
프로그램 내의 코드클론을 찾아주는 도구나 기술들을 평가하기 위해서는 해당 도구가 탐지하는 못하는 클론이 있는지 확인해야 한다. 이를 위해서 샘플 소스코드에 대해서 코드클론을 모두 모아놓은 표준 표본 집합체가 필요하다. 그런데 기존의 코드클론 표본 집합체는 여러 클론탐지 도구의 결과들을 참조해 수작업으로 구축하지만 평가 기준으로 사용하기에는 빠져있는 표본이 많다. 본 연구에서는 자동으로 코드클론 표본 집합체를 생성하는 방법을 제안하고 도구를 구현하였다. 이 도구는 프로그램 소스를 핵심구문트리로 변환한 뒤, 트리를 샅샅이 비교하여 클론 패턴을 찾아낸다. 본 도구는 오탐이 없으며, 특정한 패턴을 제외하고 미탐도 없어서 코드클론 표본 집합체를 자동으로 생성하기 적합하다. 실험결과 상용도구인 CloneDR에서 찾아낸 클론을 모두 포함하면서 2-3배 더 많은 클론들을 찾아내었고, Bellon의 기존 표본 집합체의 클론들을 거의 대부분 포함(93-100%)하면서 자동 구축한 표본 집합체의 크기가 훨씬 크다.
서로 다른 언어로 작성된 소스코드의 유사성 검사는 주로 요약구문트리를 기반으로 비교를 수행한다. 하지만 대규모의 소스코드를 실용적인 수준으로 비교하려면 토큰수준 기반에서 작동하는 유사성 검사 기술이 필요하다. 본 연구에서는 서로 다른 언어에서 생성되었지만 같은 의미를 지닌 토큰을 표현할 수 있는 공통 토큰을 정의하고, 소스코드에서 언어별 처리 과정을 거쳐 생성한 공통 토큰의 나열을 입력으로 소스코드의 유사성 검사를 수행하는 방법을 제안한다. 한국저작권위원회의 표절검사 도구 exEyes를 사용해서 서로 다른 언어로 작성된 동일한 코드를 대상으로 실험한 결과, 제안한 방법을 사용했을 때, 유사성 평가 성능이 향상됨을 보였다.
반합성 베타 락탐 항생물질의 가수분해 및 합성을 촉매하는 효소인 $\alpha$-acylamino-$\beta$-lactam acylhydrolase(ALAH)의 유전자를 Acetobacfer turbidans로부터 클론화하기 위한 연구를 수행하였다. 우선 순수 분리 정제된 효소에 대한 항혈청 (폴리클론 항체)을 제조한 다음 이를 probe로 하여 면역화학적 방법으로 유전자의 선별을 시도하였다. 이러한 용도로 개발된 운반체인 λ gtll에다 A. turbidans의 유전자 단편들을 삽입하여 genomic library를 제조한 후 이 library에서 유전자를 선별한 결과 두개의 positive clone을 얻을 수 있었다. 그러나. 이 두 clone들은 면역화학적으로 서로 다른 반응을 나타내었는데, 그 중 하나는 효소의 항혈청과는 잘 결합하나 융합되어진 베타 갈락토시다아제에 대한 항체와는 잘 결합하지 못하였고(λ gtll dn1), 또 다른 clone 은 이와 반대의 양상을 보여주었다(λ gtll dn2). 더구나 이들 clone을 여러 제한효소들로 분석해본 결과, 유전자가 삽입된 부분인 Eco RI 부위중 하나가 없어진 것을 알 수 있었다. 따라서 A. turbidans의 효소에 대한 유전자가 λ gtll에 클론화 되었으나 이 유전자와 베타 갈락토시다아제의 유전자(lacZ)간에 염기배열상 동위성이 있은 부위가 존재하여 재조합된 λ gtll 파지의 복제과정에서 삭제되어진 것으로 간주되어진다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권4호
/
pp.1224-1248
/
2022
In various sensor network applications, such as climate observation organizations, sensor nodes need to collect information from time to time and pass it on to the recipient of information through multiple bounces. According to field tests, this information corresponds to most of the energy use of the sensor hub. Decreasing the measurement of information transmission in sensor networks becomes an important issue.Compression sensing (CS) can reduce the amount of information delivered to the network and reduce traffic load. However, the total number of classification of information delivered using pure CS is still enormous. The hybrid technique for utilizing CS was proposed to diminish the quantity of transmissions in sensor networks.Further the energy productivity is a test task for the sensor nodes. However, in previous studies, a clustering approach using hybrid CS for a sensor network and an explanatory model was used to investigate the relationship between beam size and number of transmissions of hybrid CS technology. It uses efficient data integration techniques for large networks, but leads to clone attacks or attacks. Here, a new algorithm called SBEA (Snowball Endurance Algorithm) was proposed and tested with a bow. Thus, you can extend the battery life of your WSN by running effective copy detection. Often, multiple nodes, called observers, are selected to verify the reliability of the nodes within the network. Personal data from the source centre (e.g. personality and geographical data) is provided to the observer at the optional witness stage. The trust and reputation system is used to find the reliability of data aggregation across the cluster head and cluster nodes. It is also possible to obtain a mechanism to perform sleep and standby procedures to improve the life of the sensor node. The sniffers have been implemented to monitor the energy of the sensor nodes periodically in the sink. The proposed algorithm SBEA (Snowball Endurance Algorithm) is a combination of ERCD protocol and a combined mobility and routing algorithm that can identify the cluster head and adjacent cluster head nodes.This algorithm is used to yield the network life time and the performance of the sensor nodes can be increased.
본 연구는 암탐지에 우수한 능력을 보유하고 있는 공여견의 냄새 탐지 능력이 복제를 통하여 보존될 수 있을지를 알아보기 위하여 설계되었다. 직장암 탐지에 특화되어 훈련된 개를 복제하였고, 복제된 개는 환자와 건강한 지원자들로부터 채취된 호흡 샘플을 사용하여 유방암을 탐지하도록 훈련 되었다. 복제개의 암탐지 민감도는 93.3%, 특이도는 99.5%로 공여견의 암탐지 민감도 및 특이도 (91% 및 99%)와 유사하였다. 게다가 복제개는 유방암의 초기 단계까지 성공적으로 탐지할 수 있었다. 따라서 우수한 암탐지 능력은 복제를 통해서 보존될 수 있을 것이다.
Traditional soybean paste from Shandong Liangshan and Tianyuan Jiangyuan commercial soybean paste were chosen for analysis and comparison of their bacterial and fungal dynamics using denaturing gel gradient electrophoresis and 16S rRNA gene clone libraries. The bacterial diversity results showed that more than 20 types of bacteria were present in traditional Shandong soybean paste during its fermentation process, whereas only six types of bacteria were present in the commercial soybean paste. The predominant bacteria in the Shandong soybean paste were most closely related to Leuconostoc spp., an uncultured bacterium, Lactococcus lactis, Bacillus licheniformis, Bacillus spp., and Citrobacter freundii. The predominant bacteria in the Tianyuan Jiangyuan soybean paste were most closely related to an uncultured bacterium, Bacillus licheniformis, and an uncultured Leuconostoc spp. The fungal diversity results showed that 10 types of fungi were present in the Shandong soybean paste during the fermentation process, with the predominant fungi being most closely related to Geotrichum spp., an uncultured fungal clone, Aspergillus oryzae, and yeast species. The predominant fungus in the commercial soybean paste was Aspergillus oryzae.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.