• Title/Summary/Keyword: clipped-optimal control

Search Result 37, Processing Time 0.023 seconds

Semi-active control of seismically excited structures with variable orifice damper using block pulse functions

  • Younespour, Amir;Ghaffarzadeh, Hosein
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1111-1123
    • /
    • 2016
  • The present study aims at proposing an analytical method for semi-active structural control by using block pulse functions. The performance of the resulting controlled system and the requirements of the control devices are highly dependent on the control algorithm employed. In control problems, it is important to devise an accurate analytical method with less computational expenses. Block pulse functions (BPFs) set proved to be the most fundamental and it enjoyed immense popularity in different applications in the area of numerical analysis in systems science and control. This work focused on the application of BPFs in the control algorithm concerning decrease the computational expenses. Variable orifice dampers (VODs) are one of the common semi-active devices that can be used to control the response of civil Structures during seismic loads. To prove the efficiency of the proposed method, numerical simulations for a 10-story shear building frame equipped with VODs are presented. The controlled response of the frame was compared with results obtained by controlling the frame by the classical clipped-optimal control method based on linear quadratic regulator theory. The simulation results of this investigation indicated the proposed method had an acceptable accuracy with minor computational expenses and it can be advantageous in reducing seismic responses.

Application of simple adaptive control to an MR damper-based control system for seismically excited nonlinear buildings

  • Javanbakht, Majd;Amini, Fereidoun
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1251-1267
    • /
    • 2016
  • In this paper, Simple Adaptive Control (SAC) is used to enhance the seismic response of nonlinear tall buildings based on acceleration feedback. Semi-active MR dampers are employed as control actuator due to their reliability and well-known dynamic models. Acceleration feedback is used because of availability, cost-efficiency and reliable measurements of acceleration sensors. However, using acceleration feedback in the control loop causes the structure not to apparently meet some requirements of the SAC algorithm. In addition to defining an appropriate SAC reference model and using inherently stable MR dampers, a modification in the original structure of the SAC is proposed in order to improve its adaptability to the situation in which the plant does not satisfy the algorithm's stability requirements. To investigate the performance of the developed control system, a numerical study is conducted on the benchmark 20-story nonlinear building and the responses of the SAC-controlled structure are compared to an $H_2/LQG$ clipped-optimal controller under the effect of different seismic excitations. As indicated by the results, SAC controller effectively reduces the story drifts and hence the seismically-induced damage throughout the structural members despite its simplicity, independence of structural parameters and while using fewer number of dampers in contrast with the $H_2/LQG$ clipped-optimal controller.

Semi-active control of a vehicle suspension for the ride quality improvement (승차감 향상을 위한 자동차 현가장치의 반능동제어에 관한 연구)

  • Park, Ho.;Oh, Jae-Eung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.783-788
    • /
    • 1990
  • Computer simulation is carried out for passive, active, and semi-active suspension system. Each RMS and frequency response to road profile input is calculated for comparison and evaluation of the performance. The vibration analysis and active control of the quarter model of a vehicle suspension is studied in order to evaluate the alternative control laws. This paper derives an optimal closed-loop feedback law for the semi-active suspension that justifies the clipped optimal approach.

  • PDF

Design of Semi-Active Tendon for Vibration Control of Large Structures (대형 구조물의 진동제어를 위한 반능동형 댐퍼의 설계)

  • Kim, Saang-Bum;Yun, Chung-Bang;Gu, Ja-In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.282-286
    • /
    • 2000
  • In this paper, magneto-rheological(MR) damper is studied for vibration control of large infra structures under earthquake. Generally, active control devices need a large control force and a high power supply system to reduce the vibration effectively. Large and miss tuned control force may induce the dangerous situation such that the generated large control force acts to amplify the structural vibration. Recently, to overcome the weaknesses of the active control, the semi-active control method is suggested by many researchers. Semi-active control uses the passive control device of which the characteristics can be modified. Control force of the semi-active device is not generated from the actuator with power supply. It is generated as a dynamic reaction force of the device same as in the passive control case, so the control system is inherently stable and robust. Unlike the case of passive control, control force of semi-active control is adjusted depending on the measured response of the structure, so the vibration can be reduced more effectively against various unknown environmental loads. Magneto-rheological(MR) damper is one of the semi-active devices. Dynamic characteristics of the MR material can be changed by applying the magnetic fields. So the control of MR damper needs only small power. Response time of MR to the input voltage is very short, so the high performance control is possible. MR damper has a high force capacity so it is adequate to the vibration control of large infra structure. Because MR damper has a nonlinear property, normal control method used in active control may not be effective. Clipped optimal control, modified bang-bang control etc. have been suggested to MR damper by many researchers. In this study, sliding mode fuzzy control(SMFC) is applied to MR damper. Genetic algorithm is used for the controller tuning. To verify the applicability of MR damper and suggested algorithm, numerical simulation on the aseismic control is carried out. Simulation model is three-story building structure, which was used in the paper of Dyke, et al. The control performance is compared with clipped optimal control. The present results indicate that the SMFC algorithm can reduce the earthquake-induced vibration very effectively.

  • PDF

Influence of Re-growth Interval on Chemical Composition, Herbage Yield, Digestibility and Digestion Kinetics of Setaria sphacelata and Cenchrus ciliaris in Buffaloes

  • Mahr-un-Nisa, Mahr-un-Nisa;Khan, M. Ajmal;Sarwar, Muhammad;Mushtaque, M.;Murtaza, G.;Lee, W.S.;Kim, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.381-385
    • /
    • 2006
  • This study examined the influence of re-growth periods on chemical composition, biomass production, nutritive value and digestion kinetics of Setaria sphacelata (SS) and Cenchrus ciliaris (CC) in ruminally cannulated buffalo bulls. Two re-growth intervals i.e. clipping every month ($CI_1$) and clipping after every two months ($CI_2$) were compared with the control (clipped after 4 months). Mean values of leaf to stem ratio in SS and CC grasses were decreased (p<0.05) with increasing re-growth interval. The lowest leaf to stem ratio was recorded in control plots of both grasses. In both grasses, increasing growth period increased the concentrations of dry matter (DM), neutral detergent fiber (NDF) and organic matter (OM) and decreased crude protein (CP). Mean dry herbage, OM and CP yields of SS and CC were increased (p<0.05) with increasing re-growth interval. Ruminal DM and NDF digestibilities of SS and CC were decreased (p<0.05) with increasing interval. Ruminal rate of DM and NDF disappearance was higher while the ruminal lag time of these nutrients was lower with monthly than with bi-monthly clipping interval. The results from present study imply that SS and CC clipped after every two months is more beneficial than when clipped every month or every four months in terms of optimal biomass with adequate nutritional value for buffaloes.

Semi-active control of smart building-MR damper systems using novel TSK-Inv and max-min algorithms

  • Askari, Mohsen;Li, Jianchun;Samali, Bijan
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.1005-1028
    • /
    • 2016
  • Two novel semi-active control methods for a seismically excited nonlinear benchmark building equipped with magnetorheological dampers are presented and evaluated in this paper. While a primary controller is designed to estimate the optimal control force of a magnetorheological (MR) damper, the required voltage input for the damper to produce such desired control force is achieved using two different methods. The first technique uses an optimal compact Takagi-Sugeno-Kang (TSK) fuzzy inverse model of MR damper to predict the required voltage to actuate the MR dampers (TSKFInv). The other voltage regulator introduced here works based on the maximum and minimum capacities of MR damper at each time-step (MaxMin). Both semi-active algorithms developed here, use acceleration feedback only. The results demonstrate that both TSKFInv and MaxMin algorithms are quite effective in seismic response reduction for wide range of motions from moderate to severe seismic events, compared with the passive systems and performs better than original and Modified clipped optimal controller systems, known as COC and MCOC.

Modified Sliding Mode Control of Structures Using MR Dampers (MR 감쇠기를 이용한 구조물의 변형된 슬라이딩 모드 제어)

  • 민경원;정진욱
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.243-250
    • /
    • 2002
  • Semi-active control devices have received significant attention in recent Years because they offer the adaptability of active-control devices without requiring the associated large power sources. Magnetorheological(MR) dampers are semiactive control devices that use MR fluids to produce controllable dampers. This paper applies sliding mode control method using target variation rate of Lyapunov function for the control of structures by use of MR dampers. The three-story building model under earthquake excitation is analyzed by installing a MR damper in the first-story. The performance of semi-active controllers designed by clipped-optimal algorithm and modified sliding mode control algorithm is compared to the performance of passive-type MR dampers. The results indicate that semi-active controllers achieve a greater reduction of responses than passive-type system and especially the controller by modified sliding mode control method shows a good applicability in the view of response control and control force.

Structural Vibration Control Using Semiactive Tuned Mass Damper (건물의 내진성능을 향상시키기 위한 반능동 동조질량감쇠 시스템)

  • Moon, Yeong-Jong;Ji, Han-Rok;Jung, Hyung-Jo;Lee, In-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.645-650
    • /
    • 2006
  • This paper presents the results of a study to verify the sufficient control performance of semiactive tuned mass damper and to identify suitable control methods for semiactive tuned mass damper in structural vibration control. In this study, four control algorithms are considered: on-off displacement based groundhook, on-off velocity based groundhook, clipped optimal and maximum energy dissipation algorithm. For semiactive tuned mass damper, MR damper is considered as a controllable damping device and the command voltage is calculated by the control algorithms. Each of the control theory is applied to the three story shear building excited by three earthquakes. The performance of each algorithm is compared with that of conventional tuned mass damper system using evaluation criteria. The simulation results indicate that semiactive tuned mass damper has control efficiency. Among the control algorithms, on-off displacement based control theory shows the best efficacy and robustness.

  • PDF

Experimental Verification of Semiactive Control Systems for Stay Cable Vibration (케이블 진동 감쇠를 위한 반능동 제어 장치 성능의 실험적 평가)

  • 장지은;정형조;정운;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.52-59
    • /
    • 2004
  • In this paper, the efficacy of the MR damper-based control systems for vibration suppression of stay cables has been experimentally investigated. The performance of the several control strategies for the semiactive control system, such as the clipped-optimal control, the Lyapunov stability theory-based control, the maximum energy dissipation and the modulated homogeneous friction, has been compared with that of the passive-type control systems employing MR dampers. To do this, the full-scale stay cable, which is the same as used for the in-service cable-stayed bridge in Korea, is considered. The acceleration and the displacement of the stay cable as well as the damping force of the MR damper are measured. The velocity of the cable at the damper location, which is needed for some control algorithms, is obtained by differentiating the measured displacement. The damping ratios of the cable system employing the MR damper, which can be estimated by the Hilbert transform-based method, shows effectiveness of each control strategy considered.

  • PDF

Seismic response control of buildings with force saturation constraints

  • Ubertini, Filippo;Materazzi, A. Luigi
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.157-179
    • /
    • 2013
  • We present an approach, based on the state dependent Riccati equation, for designing non-collocated seismic response control strategies for buildings accounting for physical constraints, with particular attention to force saturation. We consider both cases of active control using general actuators and semi-active control using magnetorheological dampers. The formulation includes multi control devices, acceleration feedback and time delay compensation. In the active case, the proposed approach is a generalization of the classic linear quadratic regulator, while, in the semi-active case, it represents a novel generalization of the well-established modified clipped optimal approach. As discussed in the paper, the main advantage of the proposed approach with respect to existing strategies is that it allows to naturally handle a broad class of non-linearities as well as different types of control constraints, not limited to force saturation but also including, for instance, displacement limitations. Numerical results on a typical building benchmark problem demonstrate that these additional features are achieved with essentially the same control effectiveness of existing saturation control strategies.