• Title/Summary/Keyword: clip-type binding implement

Search Result 3, Processing Time 0.021 seconds

Constructability and Cost Analysis of the Clip-Type Binding Implement Substituting 135° End-Hooked Transverse Reinforcement in Reinforced Concrete Columns (철근콘크리트 기둥의 띠철근에서 135° 갈고리 대체 클립형 연결장치의 시공성 및 비용 분석)

  • Park, Koung-Yeun;Yun, Hyun-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.5
    • /
    • pp.459-469
    • /
    • 2020
  • The purpose of this study is to secure the same or more structural performance and constructability for the detail off hooks cross-constructed at 135° used as external-ties standard detail in reinforced concrete columns, therefore, to the purpose of improving constructability, The clip-type binding implement was suggested. the experiment on the constructability evaluation and cost analysis of the clip-type binding implement by 90° end-hooked transverse reinforcement in reinforced conrete columns was carried out. The results of the analysis confirmed that standard detail column took about an one hour regardless of the diameter of tie. When using the clip-type binding implement, It was reduced to about 50% of the standard detail column. and regardless of the building size, it was most effective for the cost down when using the clip-type binding implement 1ea, it was about 32% fo labor cost reduction effect in comparison with using standard detail. as a result, Using the clip-type binding implement is shown be very effective in the working time and construction cost reduction.

Clip-type Binding Implement Effect on Anchorage Behavior of 90-Degree End-Hooked Transverse Reinforcement in Reinforced Concrete Columns (클립형 연결장치로 결속된 90도 갈고리를 갖는 띠철근의 정착거동)

  • Park, Kyoung-Yeon;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.72-80
    • /
    • 2020
  • The purpose of this study is to secure the same or more structural performance and constructability for the details of hooks cross-constructed at 135 degrees used as external-ties standard detail in RC columns, therefore, to the purpose of improving constructability, the clip-type binding implement was suggested and A total of 28 pull-out specimens were prepared with the parameters of concrete compressive strength and clip-embeded length, clip installation location to examine the anchorage behavior of the clip-type binding implement. The experiment was carried out. The results of the experiment confirmed that the anchorage strength of the clip-type binding implement was higher than the details of hooks cross-constructed at 135-degree regardless of the diameter of tie and concrete strength, embeded clip length, clip installation. and The 90-degree end hook with clip-type binding implement was showed a similar an anchorage behavior of 135-degree end-hooked transverse reinforcement, consequently, The 90-degree end hooked with clip-type binding implement is evaluated to be the same anchorage behavior and performance as standard 135-degree end hook detail.

Nonlinear Finite Element Analysis of Reinforced Concrete Columns with Steel Clip-Type Implements Subjected to Cyclic Lateral Loading (반복 횡하중이 작용하는 강재 클립형 연결장치로 결속된 철근 콘크리트 기둥의 비선형 유한요소해석)

  • Yong Joo Kim;Byong Jeong Choi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.243-250
    • /
    • 2023
  • Both ends of the hoop reinforcement in the reinforced concrete (RC) columns subjected to lateral loading must necessarily be bent by 135° so as to ensure a sufficient level of ductility. However, as this reinforcement is extremely difficult to construct, this requirement is often not satisfied at construction sites. This study entailed an experimental investigation on RC columns subjected to cyclic lateral loading equipped with steel clip-type implements that were developed to replace the complicated 135° hoop reinforcement details. Four RC column specimens were manufactured, and the main test parameters included the use of high-strength concrete and steel clip-type implements. Furthermore, three-dimensional finite element models were employed to evaluate the structural performances of the test specimens via nonlinear analyses. The results of the test and finite element analyses indicate that the RC columns with the steel clip-type implements exhibit structural performances equal to or better than those with the 135° hoop reinforcement details. Further, the finite element analysis results agree well with the test results.