• Title/Summary/Keyword: climatic region

Search Result 196, Processing Time 0.024 seconds

Evaluation of Design Temperature for Asphalt Concrete in South Korea (남한의 아스팔트 콘크리트 설계온도 추정에 관한 연구)

  • Lee, Kwang Ho;Kim, Soo Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.77-85
    • /
    • 1992
  • Layer material properties of asphalt concrete changes with climatic conditions. Pavement design and analysis should be performed in the representative climatic condition that gives standard physical properties of pavement layer materials. In this study, an evaluation procedure of pavement design temperature is proposed and programed based on damage effect analysis using fatigue failure criterion. Three regions, Seoul, Daegeon, and Pusan, are chosen to obtain the representative climatic data of South Korea. Domestic pavement design temperature is developed by applying the proposed algorithm to 6 domestic pavement section models with the respective regional climatic data. Asphalt concrete pavement failure criterion is also proposed for the condition of developed domestic pavement design temperature. The design temperature for the region of South Korea is estimated as $l7^{\circ}C$, which is converted to $23.6^{\circ}C$ for the AC surface layer temperature. It is found that the procedure to determine design properties of AC surface layer material at $20^{\circ}C$ gives overestimated results of AC moduli for the domestic pavement system. From the comparison study, it is also found that the estimated pavement design temperature is similar to the result of SHELL Design Chart.

  • PDF

Evaluation of Optimum Rice Heading Period under Recent Climatic Change in Yeongnam Area (기후 변화에 따른 영남지역의 벼 출수적기 평가)

  • Kim, Choon-Song;Lee, Jae-Saeng;Ko, Jee-Yeon;Yun, Eul-Soo;Yeo, Un-Sang;Lee, Jong-Hee;Kwak, Do-Yeon;Shin, Mun-Sik;Oh, Byeong-Geun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.1
    • /
    • pp.17-28
    • /
    • 2007
  • This study was conducted to analyze the optimum heading period according to the recent climatic change for improvement of rice yield and grain quality in the Yeongnam area. We analyzed climatic elements including daily mean air temperature, daily range of air temperature, sunshine hours, and amount of precipitation from 1996 to 2005 in comparison with those of the 1971 to 2000 normal. Daily mean air temperature and amount of precipitation in the recent 10 years increased, but daily range of air temperature and sunshine hours decreased in comparison with the norm. Also, monthly mean air temperature was lowered remarkably in July and August. The monthly amount of precipitation largely increased in August and September. The daily range of air temperature and sunshine hours were greatly decreased from August to October, Possible cultivation periods for rice in the recent 10 years ranged from 171 days in Boughwa to 228 days in Busan and was expanded about $1{\sim}13$ days in comparison with the normal. Optimum heading date by local regions for the maximum climatic yield potential was estimated as July 31 at Bonghwa to September 7 at Busan, Masan, and Tongyeong in the recent 10 years. There was a wide difference in optimum heading date according to local legions of the Yeongnam area. Compared to the normal, optimum heading date in the recent 10 years was delayed about I~8 days in most local regions except Bonghwa, Mungyeong, and Yeongdeok. These results suggested that it is necessary to develop late maturity rice cultivars for producing high yield and quality rice grain due to the recent climatic change. Moreover, it is still more important to select the most suitable cultivation period appropriate to the changed climate of each local region in Yeongnam area.

A Study on Costume of Arctic Circles in Pacific Coast (태평양 연안 지역 북극권 복식 특성 연구)

  • 김문숙
    • The Research Journal of the Costume Culture
    • /
    • v.7 no.3
    • /
    • pp.35-49
    • /
    • 1999
  • The North Pacific Arctic region has common factors such as climatic characteristics and similarity of animals inhabiting the region. But also there exists geographical barriers that separates the tribes, different languages between the tribes. Although there are such differences, the clothing and ornaments of the region have relatively similar design and style. And above all possess the ‘spirit’. The tribes find the motives of such ‘spirit’ in human, animal, and soul\`s adaptability to change and in grafting such changes of forms into clothing. Especially as means of pleasing the animal that they vitally rely on, the tribes made the clothing as beautiful as the nature itself and they tried to connect the humans and animals universally through such clothing that have social, artistic, and enchantic conditions. The supply of raw materials of animals has elevated the creativeness one step up and the precise knowledge about fur show their superior techniques in making fur clothing. The use of gutskin has is an excellent example of such knowledge, which is very unique of the region. The gutskin has moderate plasticity and thus can be cut into all sorts of pattern. It harmonizes the functionality and practicality. The worldwide fashion trend is dominated by Western style, but the clothing of this region is still keeping its distinctive folk identity. At the start of the research, Kayak and itelmen tribes of Asia, the tribes of Amur river and Aleut and Tlingit tribes of North America seems to be geographically too far from each other and therefore searching theoretical background for common cultural origins seems to be immoderate. But lighting the fact that geographical adjacency that can be perceived through costume cultural history, is the most important factor that gives mutual influences to costume culture between the neighboring tribes, cultural relative similarity of the costume is influenced by geographical location rather than physical distance between the tribes. Also humans\` adaptability to their environment is seriously contaminated with man-made products. This study on North Pacific Arctic region is telling us many things about our past, present and future.

  • PDF

The Distribution of Regional Unusual Temperature Korea (한국의 지역별 이상기온의 분포 특성과 그 지역구분)

  • Heo, In-Hye
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.4
    • /
    • pp.461-474
    • /
    • 2006
  • This paper aims to analyze regional characteristics of unusual temperature events on summer and winter. The major data used in this study are the daily mean temperature of summer (June-August) and winter (December-February) and wind field on 850 hPa height. Regions of unusual temperature are divided into five regions by the monthly frequency of unusual temperature occurrence. The divided regions are following as: the middle east coastal region (I) where the summer unusual high temperature occurrence frequency is highest; the Gyunggi west coastal and northern middle inland region (II) where winter unusual low temperature occurrence frequency is highest and winter unusual high temperature occurrence frequency is low; the western middle and south region (III) where unusual temperature occurrence ratio is not concentrated on specific season; the forest and southern east region (IV) where unusual high temperature is low; and the south coastal and Jeju island region (V) where winter unusual high temperature is highest.

  • PDF

Growth performance of planted population of Pinus roxburghii in central Nepal

  • Tiwari, Achyut;Thapa, Nita;Aryal, Sugam;Rana, Prabina;Adhikari, Shankar
    • Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.264-274
    • /
    • 2020
  • Background: Climate change has altered the various ecosystem processes including forest ecosystem in Himalayan region. Although the high mountain natural forests including treelines in the Himalayan region are mainly reported to be temperature sensitive, the temperature-related water stress in an important growth-limiting factor for middle elevation mountains. And there are very few evidences on growth performance of planted forest in changing climate in the Himalayan region. A dendrochronological study was carried out to verify and record the impact of warming temperature tree growth by using the tree cores of Pinus roxburghii from Batase village of Dhulikhel in Central Nepal with sub-tropical climatic zone. For this total, 29 tree cores from 25 trees of P. roxburghii were measured and analyzed. Result: A 44-year long tree ring width chronology was constructed from the cores. The result showed that the radial growth of P. roxburghii was positively correlated with pre-monsoon (April) rainfall, although the correlation was not significant and negatively correlated with summer rainfall. The strongest negative correlation was found between radial growth and rainfall of June followed by the rainfall of January. Also, the radial growth showed significant positive correlation with that previous year August mean temperature and maximum temperature, and significant negative correlation between radial growth and maximum temperature (Tmax) of May and of spring season (March-May), indicating moisture as the key factor for radial growth. Despite the overall positive trend in the basal area increment (BAI), we have found the abrupt decline between 1995 and 2005 AD. Conclusion: The results indicated that chir pine planted population was moisture sensitive, and the negative impact of higher temperature during early growth season (March-May) was clearly seen on the radial growth. We emphasize that the forest would experience further moisture stress if the trend of warming temperatures continues. The unusual decreasing BAI trend might be associated with forest management processes including resin collection and other disturbances. Our results showed that the planted pine forest stand is sub-healthy due to major human intervention at times. Further exploration of growth climate response from different climatic zones and management regimes is important to improve our understanding on the growth performance of mid-hill pine forests in Nepal.

Classification of the Core Climatic Region Established by the Entropy of Climate Elements - Focused on the Middle Part Region - (기후요소의 엔트로피에 의한 핵심 기후지역의 구분 - 중부지방을 중심으로 -)

  • Park, Hyun-Wook;Chung, Sung-Suk;Park, Keon-Yeong
    • Journal of the Korean earth science society
    • /
    • v.27 no.2
    • /
    • pp.159-176
    • /
    • 2006
  • Geographic factors and mathmatical location of the Korean Peninsula have great influences on the variation patterns and appearances over a period of ten days of summer precipitation. In order to clarify the influence of several climate factors on precise climate classification in the middle part region of the Korea, weather entropy and the information ratio were calculated on the basis of information theory and of the data of 25 site observations. The data used for this study are the daily precipitation phenomenon over a period of ten days of summer during the recent thirteen years (1991-2003) at the 25 stations in the middle part region of the Korea. It is divided into four classes of no rain, $0.1{\sim}10.0mm/day,\;10.1{\sim}30.0mm/day$, 30.1mm over/day. Their temporal and spatial change were also analyzed. The results are as follows: the maximum and minimum value of calculated weather entropy are 1.870 bits at Chuncheon in the latter ten days of July and 0.960 bits at Ganghwa during mid September, respectively. And weather entropy in each observation sites tends to be larger in the beginning of August and smaller towards the end of September. The largest and smallest values of weather representative ness based on information ratio were observed at Chungju in the beginning of June and at Deagwallyeong towards the end of July. However, the largest values of weather representativeness came out during the middle or later part of September when 15 sites were adopted as the center of weather forecasting. The representative core region of weather forecasting and climate classification in the middle part region of the Korea are inside of the triangle region of the Buyeo, Incheon, and Gangneung.

Analysis on the Characteristics of Climate about Korean Summer Season 1998

  • Cha, Eun-Jeong;Choi, Young-Jean;Oh, Jai-Ho
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.26 no.1
    • /
    • pp.31-41
    • /
    • 1998
  • The climatic characteristics of summer in 1998 are analyzed with the weather observational data and the upper air observational data. The temperature of that period is lower than that of normal years and the precipitation is larger. Due to the heavy rainfall which started at July 31, rain pured down compared to normal years and the maximum precipitation recorded at the many observational stations, particularly in Seoul, Kyunggi-Do region and mountanious districts like Taegwallyong, Mt. Sokri and Mt. Chiri. The patterns of general circulations in 1982/98 and 1997/98 are compared each other and are analyzed. The anomaly patterns of stream functions on winter in two El Nio years are simialr. The counterclockwise circulation occurred near the date line and the clockwise circulation was appeared near the Hwanam region and Alaska. These patterns are opposite to those of La Nia year, 1988/89. And the anomaly patterns of 500hPa geopotential height in summer are similar, too. The low temperature and much rain were dominated in summer of 1997/98. These phenomena is similar to the existing results of research, that temperature is low and precipitation is large in summer of El Nio years.

  • PDF

Landslide Susceptibility Mapping for 2015 Earthquake Region of Sindhupalchowk, Nepal using Frequency Ratio

  • Yang, In Tae;Acharya, Tri Dev;Lee, Dong Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.443-451
    • /
    • 2016
  • Globally, landslides triggered by natural or human activities have resulted in enormous damage to both property and life. Recent climatic changes and anthropogenic activities have increased the number of occurrence of these disasters. Despite many researches, there is no standard method that can produce reliable prediction. This article discusses the process of landslide susceptibility mapping using various methods in current literatures and applies the FR (Frequency Ratio) method to develop a susceptibility map for the 2015 earthquake region of Sindhupalchowk, Nepal. The complete mapping process describes importance of selection of area, and controlling factors, widespread techniques of modelling and accuracy assessment tools. The FR derived for various controlling factors available were calculated using pre- and post- earthquake landslide events in the study area and the ratio was used to develop susceptibility map. Understanding the process could help in better future application process and producing better accuracy results. And the resulting map is valuable for the local general and authorities for prevention and decision making tasks for landslide disasters.

Analysis of drought in Northwestern Bangladesh using standardized precipitation index and its relation to Southern oscillation index

  • Nury, Ahmad Hasan;Hasan, Khairul
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.58-68
    • /
    • 2016
  • The study explored droughts using the Standardized Precipitation Index (SPI) in the northwestern region of Bangladesh, which is the drought prone area. In order to assess the trend and variability of monthly rainfall, as well as 3-month scale SPI, non-parametric Mann-Kendall (MK) tests and continuous wavelet transform were used respectively. The effect of climatic parameters on the drought in this region was also evaluated using SPI, with the Southern Oscilation Index (SOI) by means of the wavelet coherence technique, a relatively new and powerful tool for describing processes. The MK test showed no statistically significant monthly rainfall trends in the selected stations, whereas the seasonal MK test showed a declining rainfall trend in Bogra, Ishurdi, Rangpur and Sayedpur stations respectively. Sen's slope of six stations also provided a decreasing rainfall trend. The trend of the SPI, as well as Sen's slope indicated an increasing dryness trend in this area. Dominant periodicity of 3-month scale SPI at 8 to 16 months, 16 to 32 months, and 32 to 64 months were observed in the study area. The outcomes from this study contribute to hydrologists to establish strategies, priorities and proper use of water resources.

Time trend of malaria in relation to climate variability in Papua New Guinea

  • Park, Jae-Won;Cheong, Hae-Kwan;Honda, Yasushi;Ha, Mina;Kim, Ho;Kolam, Joel;Inape, Kasis;Mueller, Ivo
    • Environmental Analysis Health and Toxicology
    • /
    • v.31
    • /
    • pp.3.1-3.11
    • /
    • 2016
  • Objectives This study was conducted to describe the regional malaria incidence in relation to the geographic and climatic conditions and describe the effect of altitude on the expansion of malaria over the last decade in Papua New Guinea. Methods Malaria incidence was estimated in five provinces from 1996 to 2008 using national health surveillance data. Time trend of malaria incidence was compared with rainfall and minimum/maximum temperature. In the Eastern Highland Province, time trend of malaria incidence over the study period was stratified by altitude. Spatio-temporal pattern of malaria was analyzed. Results Nationwide, malaria incidence was stationary. Regionally, the incidence increased markedly in the highland region (292.0/100000/yr, p =0.021), and remained stationary in the other regions. Seasonality of the malaria incidence was related with rainfall. Decreasing incidence of malaria was associated with decreasing rainfall in the southern coastal region, whereas it was not evident in the northern coastal region. In the Eastern Highland Province, malaria incidence increased in areas below 1700 m, with the rate of increase being steeper at higher altitudes. Conclusions Increasing trend of malaria incidence was prominent in the highland region of Papua New Guinea, while long-term trend was dependent upon baseline level of rainfall in coastal regions.