• Title/Summary/Keyword: climatic region

Search Result 196, Processing Time 0.031 seconds

The Comparative Studies on the Distribution and Species Composition of Forest Community in Korea and Japan around the East Sea (한국과 일본의 동해안 지역에 분포하는 산림군락의 종조성과 분포에 관한 비교 연구)

  • Yun, Jong-Hak;Hukusima, Tukasa;Kim, Moon-Hong;Yoshikawa, Masato
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.3
    • /
    • pp.327-357
    • /
    • 2011
  • This study compared the species composition and distribution of the forest communities between Korea and Japan using vegetation releve database. The study included the eastern and southern Korean Peninsula, Is. Jeju, Is. Ulreung, northern Kyushu, central part of Japan and Is. Tsushima and divided in fourteen region with major mountain as the center. Seventy-nine forest communities were classified by tabular comparison with the total of 1844 releves. In the composition table, fifty-four groups of plant species were listed. Some grew in one area exclusively, while others were present in multiple locations. This study showed the similarity and heterogeneity of species composition among study areas. We grouped fourteen types showing similar physiognomy for forest communities. The physiognomical features of the vertical vegetation zones in the study area were similar, however, dominant species and species composition were different between the regions. In the lowland zone, Castanopsis-Type dominated by Castanopsis cuspidata var. sieboldii or Castanopsis cuspidata were distributed in the study area except for northern part of the Korean Peninsula and Is. Ulreung. Additionally, Persea thunbergii-Type was distributed widely in the lowest part of the study area, however, it showed the simplification of the species composition in the Korean Peninsula and Is. Ulreung. In the hilly zone, evergreen forest composed by Abies firma-Type distributed in northern Kyushuand Is. Tsushima, but it was absent in the other study region. The difference in forest community was conspicuous, especially in the montane zone. Deciduous broadleaved forests composed Quercus(D)-Type and Fagus-Type widely distributed in the montane of study area. However, forest community dominated by Quercus mongolica and Fagus multinervis flourished in Korea. On the otherhand, forest community dominated by Quercus mongolica var. grosseserrata, Fagus crenata and F. japonica distributed in Japan. In the sub-alpine zone, evergreen coniferous forest composed Abies-Quercus(D)-Type, Abies koreana-Type, and Pinus pumila-Type were distributed in the Korean Peninsula and Is. Jeju. Forests composed Taxus cuspidata var. nana-Type, Abies mariesii-Type, and Pinus pumila-Type distributed in the central part of Japan. As a result of DCA ordination, evergreen broadleaved forests of the whole study area showed the lower scores along the first axis, while deciduous and coniferous forests showed the higher scores. The forest types of western part of Japan were located the higer scores, forest types of the Korean Peninsula were located the lower scores, and forest types of Is. Jeju located in the middle. Warmth index (WI) and Annual range of temperature in climate factor were highly correlated on the first axis. The first axis reflected the gradient from oceanic climatic to continental one. The higher the altitude and further geographically, the lower the similarity among communities and the peculiarity of community appeared stronger. The historical background reflecting local flora has strongly influenced on development of community.

Vegetation on Basic, Alkaloid, Arid Land of the Whole Area of Baicheng City, Jilin Province, China (중국(中國) 길림성(吉林省) 백성시(白城市) 일대의 염성(鹽性), 알칼리성 건조지(乾操地) 식생(植生)에 관한 연구)

  • Ahn, Young-Hee;Wang, Bai-Cheng;Jin, Ying-Hua;Choe, Chang-Young;Xuan, Yong-Nan;Song, Dong-Ok
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.1
    • /
    • pp.90-98
    • /
    • 2009
  • Every spring, Korea is always plagued by sandy dust from the western region of China and Mongolia. Yellow sand is causing an environmental problem to Japan and far into the American continent, let alone Korea. At present, the western region of China is going under desertification at a great speed due to climatic change and humans' damaging activities. To cope with this, each country including China is considering ecological restoration of deserts through planting. Accordingly, this research conducted a vegetation survey on Baicheng district which is a representative dry land of western China to obtain a basic data for ecological restoration of a desert. The survey revealed that Setaria viridis which invaded an arid land made a succession into Setaria viridis-Cannabis sativa var. fruderalis community together with Artemisia mongolica-Setaria viridis community due to the increase in salt concentration and alkalization subsequent to dryness. It was also found out that there finally formed Artemisia mongolica community on a flat intense in harsh wind and dryness with the continuous worsening of environmental conditions. There appeared a different type of vegetation on hilly districts where sporadic shade could come into being because the air humidity could be available relatively there. Frequently, typically appearing at the whole survey area, the Tributlus terrestris community was found to make succession into Tribulus terrestris-Cleisrogenes squarrosa community due to the aggravation of soil environment. In addition, with the worsening of the environment at hilly districts, there formed Clesirogenes squarrosa community resistant to dryness, salinity in soil and strong alkalinity. Further, there appeared higher plant life totalling to 62 taxa comprising 58 species and 4 varieties with 27 families and 49 genuses at the whole survey area. Among these, Compositae plants excellent in resistance to environment was surveyed the most, accounting for 27%.

Predicting Suitable Restoration Areas for Warm-Temperate Evergreen Broad-Leaved Forests of the Islands of Jeollanamdo (전라남도 섬 지역의 난온대 상록활엽수림 복원을 위한 적합지 예측)

  • Sung, Chan Yong;Kang, Hyun-Mi;Park, Seok-Gon
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.5
    • /
    • pp.558-568
    • /
    • 2021
  • Poor supervision and tourism activities have resulted in forest degradation in islands in Korea. Since the southern coastal region of the Korean peninsula was originally dominated by warm-temperate evergreen broad-leaved forests, it is desirable to restore forests in this region to their original vegetation. In this study, we identified suitable areas to be restored as evergreen broad-leaved forests by analyzing the environmental factors of existing evergreen broad-leaved forests in the islands of Jeollanam-do. We classified forest lands in the study area into six vegetation types from Sentinel-2 satellite images using a deep learning algorithm and analyzed the tolerance ranges of existing evergreen broad-leaved forests by measuring the locational, topographic, and climatic attributes of the classified vegetation types. Results showed that evergreen broad-leaved forests were distributed more in areas with a high altitudes and steep slope, where human intervention was relatively low. The human intervention has led to a higher distribution of evergreen broad-leaved forests in areas with lower annual average temperature, which was an unexpected but understandable result because an area with higher altitude has a lower temperature. Of the environmental factors, latitude and average temperature in the coldest month (January) were relatively less contaminated by the effects of human intervention, thus enabling the identification of suitable restoration areas of the evergreen broad-leaved forests. The tolerance range analysis of evergreen broad-leaved forests showed that they mainly grew in areas south of the latitude of 34.7° and a monthly average temperature of 1.7℃ or higher in the coldest month. Therefore, we predicted the areas meeting these criteria to be suitable for restoring evergreen broad-leaved forests. The suitable areas cover 614.5 km2, which occupies 59.0% of the total forest lands on the islands of Jeollanamdo, and 73% of actual forests that exclude agricultural and other non-restorable forest lands. The findings of this study can help forest managers prepare a restoration plan and budget for island forests.

Crop Injury (Growth Inhibition) Induced by Herbicides and Remedy to Reduce It (제초제(除草劑) 약해발생(藥害發生) 양상(樣相)과 경감대책(輕減對策))

  • Kim, K.U.
    • Korean Journal of Weed Science
    • /
    • v.12 no.3
    • /
    • pp.261-270
    • /
    • 1992
  • Many herbicides that are applied at the soil before weed emergence inhibit plant growth soon after weed germination occurs. Plant growth has been known as an irreversible increase in size as a result of the processes of cell divison and cell enlargement. Herbicides can influence primary growth in which most new plant tissues emerges from meristmatic region by affecting either or both of these processes. Herbicides which have sites of action during interphase($G_1$, S, $G_2$) of cell cycle and cause a subsequent reduction in the observed frequency of mitotic figures can be classified as an inhibitor of mitotic entry. Those herbicides that affect the mitotic sequence(mitosis) by influencing the development of the spindle apparatus or by influencing new cell plate formation should be classified as causing disruption of the mitotic sequence. Sulfonylureas, imidazolinones, chloroacetamides and some others inhibit plant growth by inhibiting the entry of cell into mitosis. The carbamate herbicides asulam, carbetamide, chlorpropham and propham etc. reported to disrupt the mitotic sequence, especially affecting on spindle function, and the dinitroaniline herbicides trifluralin, nitralin, pendimethalin, dinitramine and oryzalin etc. reported to disrupt the mitotic sequence, particularly causing disappearence of microtubles from treated cells due to inhibition of polymerization process. An inhibition of cell enlargement can be made by membrane demage, metabolic changes within cells, or changes in processes necessary for cell yielding. Several herbicides such as diallate, triallate, alachlor, metolachlor and EPTC etc. reported to inhibit cell enlargement, while 2, 4-D has been known to disrupt cell enlargement. One potential danger inherent in the use of soil acting herbicides is that build-up of residues could occur from year to year. In practice, the sort of build-up that would be disastrous is unikely to occur for substances applied at the correct soil concentration. Crop injury caused by soil applied herbicides can be minimized by (1) following the guidance of safe use of herbicides, particularly correct dose at correct time in right crop, (2) by use of safeners which protect crops against injury without protecting any weed ; interactions between herbicides and safeners(antagonists) at target sites do occur probably from the following mechanisms (1) competition for binding site, (2) circumvention of the target site, and (3) compensation of target site, and another mechanism of safener action can be explained by enhancement of glutathione and glutathione related enzyme activity as shown in the protection of rice from pretilachlor injury by safener fenclorim, (3) development of herbicide resistant crops ; development of herbicide-resistant weed biotypes can be explained by either gene pool theory or selection theory which are two most accepted explanations, and on this basis it is likely to develop herbicide-resistant crops of commercial use. Carry-over problems do occur following repeated use of the same herbicide in an extended period of monocropping, and by errors in initial application which lead to accidental and irregular overdosing, and by climatic influence on rates of loss. These problems are usually related to the marked sensitivity of the particular crops to the specific herbicide residues, e.g. wheat/pronamide, barley/napropamid, sugarbeet/ chlorsulfuron, quinclorac/tomato. Relatively-short-residual product, succeeding culture of insensitive crop to specific herbicide, and greater reliance on postemergence herbicide treatments should be alternatives for farmer practices to prevent these problems.

  • PDF

Characteristics of Quercus mongolica Dominant Community on the Ridge of the Nakdong-Jeongmaek -Focusing on the Baekbyeongsan, Chilbosan, Baegamsan, Unjusan, Goheonsan, Gudeoksan- (낙동정맥 마루금 일대의 신갈나무우점군락 특성 -백병산, 칠보산, 백암산, 운주산, 고헌산, 구덕산을 중심으로-)

  • Kang, Hyun-Mi;Kim, Dong-Hyo;Park, Seok-Gon
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.4
    • /
    • pp.318-333
    • /
    • 2020
  • The Nakdong-Jeongmaek extends north and south from Taebaek-si of Gangwon-do to Busan metropolitan city and includes a wide range of forest zone from temperate to the warm-temperature forest. The purpose of this study was to analyze the vegetation structural characteristics of the Quercus mongolica-dominant community, which was distributed in the largest area in Baekdudaegan and Jeongmaek, by region and communities in the Nakdong-Jeongmaek. For the study, a representative 6 sites were selected: Baekbyeongsan, Chilbosan, Baegamsan, Unjusan, Goheonsan, and Gudeoksan. The survey of the 6 sites showed that the canopy had over 85% the importance percentage of Quercus mongolica. In the understory, Rhododendron schlippenbachii, Fraxinus sieboldiana, etc. were located and Fraxinus sieboldiana, Lespedeza maximowiczii, Tripterygium regelii and so on were found in the shrub. The importance percentage of 4 communities of Quercus mongolica, which were separated by TWINSPAN, in the canopy was more than 80%, and the dominant species in the understory and shrub were the same. Currently, Quercus mongolica has been identified as the understory following the canopy, and the Quercus mongolica-dominant community is expected to continue unless there are external factors. In the temperate forest regions in Korea, Quercus spp.and Carpinus laxiflora form the major forest physiognomy in the natural forest state. Based on these characteristics, the Quercus mongolica-dominant community on the ridge of the Nakdong-Jeongmaek is considered to have characteristics of temperate forests in Korea. The Quercus mongolica community is a representative cool-temperate deciduous forest and known as a climatic climax in the upper section of the mountains in the Korean Peninsula. Trees of the same species should be distributed at each layer to maintain the dominant species' status in the canopy's climax forest. Therefore, the Quercus mongolica community is considered the climax forest in the ridge of the Nakdong-Jeongmaek.

Defining Homogeneous Weather Forecasting Regions in Southern Parts of Korea (남부지방의 일기예보구역 설정에 관한 연구)

  • Kim, Il-Kon;Park, Hyun-Wook
    • Journal of the Korean Geographical Society
    • /
    • v.31 no.3
    • /
    • pp.469-488
    • /
    • 1996
  • The defining of weather forecasting regions is possible. since the representativeness of regional weather can by reasonably clarified in terms of weather entropy and the use of information ratio. In this paper, the weather entropy and information ratio were derived numerially from using the information theory. The typical weather characteristics were clarified and defined in the homogeneous weather forecasting regions of the southern parts of Korea. The data used for this study are the daily precipitation and cloudiness during the recent five years (1990-1994) at 42 stations in southern parts of Korea. It is divided into four classes of fine, clear, cloudy and rainy. The results are summarized as follows: 1. The maximum value of weather entropy in study area is 2.009 vits in Yosu in July, and the minimum one is 1.624 bits in Kohung in October. The mean value of weather entropy is maximal in July, on the other hand, minimal in October during four season. The less the value of entropy is, the stabler the weather is. While the bigger the value of entropy is, the more changeable the weather is. 2. The deviation from mean value of weather entropy in southern parts of Korea, with the positive and the negative parts, shows remarkably the distributional tendency of the east (positive) and the west (negative) in January but of the south (positive) and the north (negative) in July. It also clearly shows the distributional tendency of the east (postive) and the west(negative) in the coastal region in April, and of X-type (southern west and northern east: negative) in Chiri Mt. in October. 3. In southern parts, the average information ratio maximaly appear 0.618 in Taegu area in July, whereas minimally 0.550 in Kwangju in October. Particularly the average information ratio of Pusan area is the greatest in April, but the smallest in October. And in Taegu, Kwangju, and Kunsan, it is the greatest in April, January, and July, but the smallest in Jyly, July, and pril. 4.The narrowest appreance of weather representativeness is in July when the Kwangju is the center of the weather forecasting. But the broadest one is in April when Taegu is the center of weather forecasting. 5. The defining of weather forecasting regions in terms of the difference of information ratio most broadly shows up in July in Pusan including the whole Honam area and the southern parts of Youngnam when the Pusan-Taegu is the basis of the application of information ratio. Meanwhile, it appears most broadly in January in Taegu including the whole southern parts except southern coastal area.

  • PDF

Estimation and assessment of baseflow at an ungauged watershed according to landuse change (토지이용변화에 따른 미계측 유역의 기저유출량 산정 및 평가)

  • Lee, Ji Min;Shin, Yongchun;Park, Youn Shik;Kum, Donghyuk;Lim, Kyoung Jae;Lee, Seung Oh;Kim, Hungsoo;Jung, Younghun
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.303-318
    • /
    • 2014
  • Baseflow gives a significant contribution to stream function in the regions where climatic characteristics are seasonally distinct. In this regard, variable baseflow can make it difficult to maintain a stable water supply, as well as causing disruption to the stream ecosystem. Changes in land use can affect both the direct flow and baseflow of a stream, and consequently, most other components of the hydrologic cycle. Baseflow estimation depends on the observed streamflow in gauge watersheds, but accurate predictions of streamflow through modeling can be useful in determining baseflow data for ungauged watersheds. Accordingly, the objectives of this study are to 1) improve predictions of SWAT by applying the alpha factor estimated using RECESS for calibration; 2) estimate baseflow in an ungauged watershed using the WHAT system; and 3) evaluate the effects of changes in land use on baseflow characteristics. These objectives were implemented in the Gapcheon watershed, as an ungauged watershed in South Korea. The results show that the alpha factor estimated using RECESS in SWAT calibration improves the prediction for streamflow, and, in particular, recessions in the baseflow. Also, the changes in land use in the Gapcheon watershed leads to no significant difference in annual baseflow between comparable periods, regardless of precipitation, but does lead to differences in the seasonal characteristics observed for the temporal distribution of baseflow. Therefore, the Guem River, into which the stream from the Gapcheon watershed flows, requires strategic seasonal variability predictions of baseflow due to changes in land use within the region.

Predicting the suitable habitat of the Pinus pumila under climate change (기후변화에 의한 눈잣나무의 서식지 분포 예측)

  • Park, Hyun-Chul;Lee, Jung-Hwan;Lee, Gwan-Gyu
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.5
    • /
    • pp.379-392
    • /
    • 2014
  • This study was performed to predict the future climate envelope of Pinus pumila, a subalpine plant and a Climate-sensitive Biological Indicator Species (CBIS) of Korea. P. pumila is distributed at Mt. seorak in South Korea. Suitable habitat were predicted under two alternative RCPscenarios (IPCC AR5). The SDM used for future prediction was a Maxent model, and the total number of environmental variables for Maxent was 8. It was found that the distribution range of P. pumila in the South Korean was $38^{\circ}7^{\prime}8^{{\prime}{\prime}}N{\sim}38^{\circ}7^{\prime}14^{{\prime}{\prime}}N$ and $128^{\circ}28^{\prime}2^{{\prime}{\prime}}E{\sim}128^{\circ}27^{\prime}38^{{\prime}{\prime}}E$ and 1,586m~1,688m in altitude. The variables that contribute the most to define the climate envelope are altitude. Climate envelope simulation accuracy was evaluated using the ROC's AUC. The P. pumila model's 5-cv AUC was found to be 0.99966. which showed that model accuracy was very high. Under both the RCP4.5 and RCP8.5 scenarios, the climate envelope for P. pumila is predicted to decrease in South Korea. According to the results of the maxent model has been applied in the current climate, suitable habitat is $790.78km^2$. The suitable habitats, are distributed in the region of over 1,400m. Further, in comparison with the suitable habitat of applying RCP4.5 and RCP8.5 suitable habitat current, reduction of area RCP8.5 was greater than RCP4.5. Thus, climate change will affect the distribution of P. pumila. Therefore, governmental measures to conserve this species will be necessary. Additionally, for CBIS vulnerability analysis and studies using sampling techniques to monitor areas based on the outcomes of this study, future study designs should incorporate the use of climatic predictions derived from multiple GCMs, especially GCMs that were not the one used in this study. Furthermore, if environmental variables directly relevant to CBIS distribution other than climate variables, such as the Bioclim parameters, are ever identified, more accurate prediction than in this study will be possible.

The Effect of some Meteorological Factors on the seed characteristics in Korean White pine (Pinus koraiensis S. et Z.) - The weight of cone and seed per cone - (잣나무 종자형질에 미치는 몇 개 기상인자의 영향 -구과 무게 및 구과당 종자 무게 -)

  • Joo Young-Tuk;Chon Sang-Kuen;Chung Dong-Jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.1
    • /
    • pp.20-28
    • /
    • 1999
  • This study was conducted to reveal the effect of some meterological factors on the weight of cone and seed per cone in Korean white pine (Pinus koraiensis SIEB. et ZUCC.). The weight of cone and seed per cone for 7 years from 1992 to 1998 on 45(1992) year-old trees and some meterological factors for 9 years from 1990 to 1998 were surveyed in Hongcheon-Gun region, Gangweon-Do. Simple correlations and multiple regression between weight of cone and seed per cone and some meterological factors were analyzed. The results obtained from the above experiments were as follows: 1. Positive correlations were found between weight of cone and monthly mean temperature of February in flower bud differentiation year. number of annual hoarfrost days of the cone production year monthly mean temperature of may in the cone production year, as July respectively. There were negative correlations between weight of cone and monthly mean temperature of august in the flowering year, wind speed of April in the flower bud differentiation year, number of clear days of december in the flowering year, number of annual cloudy days of the flowering year, number of precipitation days of june in the flowering year, number of annual precipitation days of the flowering year, number of annual cloudy days of March in the cone production year. number of annual cloudy days from march to October in the flowering year as well as number of precipitation from march to october in the flowering year. 2. Positive correlation between weight of seed per cone and number of hours with sunshine duration of June in the flowering year, the percentage of sunshine duration of June in the flowering year, number of clear days of June in the flowering year. monthly mean temperature of may in the cone production year. as well as monthly mean temperature of July in the cone production year were found. Negative correlations were recognized between weight of seed per cone and monthly mean temperature of January in the flowering year, monthly mean temperature of august in the flowering year, wind speed of april in the flower bud differentiation year, number of annual cloudy days of the flowering year, number of precipitation days of June in the flowering year, number of annual cloudy days from March to October in the flowering year as well as number of precipitation from march to October in the flowering year.

  • PDF

THE ECOLOGY, PHYTOGEOGRAPHY AND ETHNOBOTANY OF GINSENG

  • Hu Shiu Ying
    • Proceedings of the Ginseng society Conference
    • /
    • 1978.09a
    • /
    • pp.149-157
    • /
    • 1978
  • Ginseng is the English common name for the species in the genus Panax. This article gives a broad botanical review including the morphological characteristics, ecological amplitude, and the ethnobotanical aspect of the genus Panax. The species of Panax are adapted for life in rich loose soil of partially shaded forest floor with the deciduous trees such as linden, oak, maple, ash, alder, birch, beech, hickory, etc. forming the canopy. Like their associated trees, all ginsengs are deciduous. They require annual climatic changes, plenty of water in summer, and a period of dormancy in winter. The plant body of ginseng consists of an underground rhizome and an aerial shoot. The rhizome has a terminal bud, prominent leafscars and a fleshy root in some species. It is perennial. The aerial shoot is herbaceous and annual. It consists of a single slender stem with a whorl of digitately compound leaves and a terminal umbel bearing fleshy red fruits after flowering. The yearly cycle of death and renascence of the aerial shoot is a natural phenomenon in ginseng. The species of Panax occur in eastern North America and eastern Asia, including the eastern portion of the Himalayan region. Such a bicentric generic distributional pattern indicates a close floristic relationship of the eastern sides of two great continental masses in the northern hemisphere. It is well documented that genera with this type of disjunct distribution are of great antiquity. Many of them have fossil remains in Tertiary deposits. In this respect, the species of Panax may be regarded as living fossils. The distribution of the species, and the center of morphological diversification are explained with maps and other illustrations. Chemical constituents confirm the conclusion derived from morphological characters that eastern Asia is the center of species concentration of Panax. In eastern North America two species occur between longitude $70^{\circ}-97^{\circ}$ Wand latitude $34^{\circ}-47^{\circ}$ N. In eastern Asia the range of the genus extends from longitude $85^{\circ}$ E in Nepal to $140^{\circ}$ E in Japan, and from latitude $22^{\circ}$ N in the hills of Tonkin of North Vietnam to $48^{\circ}$ N in eastern Siberia. The species in eastern North America all have fleshy roots, and many of the species in eastern Asia have creeping stolons with enlarged nodes or stout horizontal rhizomes as storage organs in place of fleshy roots. People living in close harmony with nature in the homeland of various species of Panax have used the stout rhizomes or the fleshy roots of different wild forms of ginseng for medicine since time immemorial. Those who live in the center morphological diversity are specific both in the application of names for the identification of species in their communication and in the use of different roots as remedies to relieve pain, to cure diseases, or to correct physiological disorders. Now, natural resources of wild plants with medicinal virtue are extremely limited. In order to meet the market demand, three species have been intensively cultivated in limited areas. These species are American ginseng (P. quinquefolius) in northeastern United States, ginseng (P. ginseng) in northeastern Asia, particularly in Korea, and Sanchi (P. wangianus) in southwestern China, especially in Yunnan. At present hybridization and selection for better quality, higher yield, and more effective chemical contents have not received due attention in ginseng culture. Proper steps in this direction should be taken immediately, so that our generation may create a richer legacy to hand down to the future. Meanwhile, all wild plants of all species in all lands should be declared as endangered taxa, and they should be protected from further uprooting so that a. fuller gene pool may be conserved for the. genus Panax.

  • PDF