• Title/Summary/Keyword: climatic niche

Search Result 6, Processing Time 0.023 seconds

Modeling the Present Probability of Urban Woody Plants in the face of Climate Change (기후변화에 따른 도시 수종의 기후 적합성 평가모델 - 서울시를 대상으로 -)

  • Kim, Yoon-Jung;Lee, Dong-Kun;Park, Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.159-170
    • /
    • 2013
  • The effect of climate change on urban woody plants remains difficult to predict in urban areas. Depending on its tolerances, a plant species may stay and survive or stay with slowly declining remnant populations under a changing climate. To predict those vulnerabilities on urban woody plants, this study suggests a basic bioclimatic envelop model of heat requirements, cold tolerance, chilling requirements and moisture requirements that are well documented as the 'climatic niche'. Each component of the 'climatic niche' is measured by the warmth index, the absolute minimum temperature, the number of chilling weeks and the water balance. Regarding the utility of the developed model, the selected urban plant's present probabilities are suggested in the future climate of Seoul. Both Korea and Japan's thermal thresholds are considered for a plant's optimal climatic niche. By considering the thermal thresholds of these two regions for the same species, the different responses observed will reflect the plant's 'hardening' process in a rising climate. The model illustrated that the subpolar plants Taxus cuspidata and Ulmus davidiana var. japonica are predicted to have low suitability in Seoul. The temperate plants Zelkova serrata and Pinus densiflora, which have a broad climatic niche, exhibited the highest present probability in the future. The subtropical plants Camellia japonica and Castanopsis cuspidata var. sieboldii may exhibit a modest growth pattern in the late 21C's future climatic period when an appropriate frost management scheme is offered. The model can be used to hypothesize how urban ecosystems could change over time. Moreover, the developed model can be used to establish selection guidelines for urban plants with high levels of climatic adaptability.

Climate Change Impact Assessment of Abies nephrolepis (Trautv.) Maxim. in Subalpine Ecosystem using Ensemble Habitat Suitability Modeling (서식처 적합모형을 적용한 고산지역 분비나무의 기후변화 영향평가)

  • Choi, Jae-Yong;Lee, Sang-Hyuk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.1
    • /
    • pp.103-118
    • /
    • 2018
  • Ecosystems in subalpine regions are recognized as areas vulnerable to climatic changes because rainfall and the possibility of flora migration are very low due to the characteristics of topography in the regions. In this context, habitat niche was formulated for representative species of arbors in subalpine regions in order to understand the effects of climatic changes on alpine arbor ecosystems. The current potential habitats were modeled as future change areas according to the climatic change scenarios. Based on the growth conditions and environmental characteristics of the habitats, the study was conducted to identify direct and indirect causes affecting the habitat reduction of Abies nephrolepis. Diverse model algorithms for explanation of the relationship between the emergence of biological species and habitat environments were reviewed to construct the environmental data suitable for the six models(GLM, GAM, RF, MaxEnt, ANN, and SVM). Weights determined through TSS were applied to the six models for ensemble in an attempt to minimize the uncertainty of the models. Based on the current climate determined by averaging the climates over the past 30years(1981~2010) and the HadGEM-RA model was applied to fabricate bioclimatic variables for scenarios RCP 4.5 and 8.5 on the near and far future. The results of models of the alpine region tree species studied were put together and evaluated and the results indicated that a total of eight national parks such as Mt. Seorak, Odaesan, and Hallasan would be mainly affected by climatic changes. Changes in the Baekdudaegan reserves were analyzed and in the results, A. nephrolepis was predicted to be affected the most in the RCP8.5. The results of analysis as such are expected to be finally utilizable in the survey of biological species in the Korean peninsula, restoration and conservation strategies considering climatic changes as the analysis identified the degrees of impacts of climatic changes on subalpine region trees in Korean peninsula with very high conservation values.

Prevalence of Mycotoxins and Their Consequences on Human Health

  • Omotayo, Oluwadara Pelumi;Omotayo, Abiodun Olusola;Mwanza, Mulunda;Babalola, Olubukola Oluranti
    • Toxicological Research
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Mycotoxin contamination is a global phenomenon and causes a wide array of negative effects and other complications. This study focused on commonly found mycotoxins in Africa and the possible means of prevention or reduction of their contaminating effects. Mycotoxins are secondary metabolites of mold and fungi; they are generally toxic to living organisms. Hundreds of mycotoxins have been identified thus far, with some, such as aflatoxins, ochratoxins, trichothecenes, zearalenone, fumonisins, and patulin, considered agro-economically important. Several factors contribute to the presence of mycotoxins in food, such as climatic conditions, pest infestation, and poor harvest and storage practices. Exposure to mycotoxins, which occurs mostly by ingestion, leads to various diseases, such as mycotoxicoses and mycoses that may eventually result in death. In light of this, this review of relevant literature focuses on mycotoxin contamination, as well as various methods for the prevention and control of their prevalence, to avert its debilitating consequences on human health. Clear evidence of mycotoxin contamination is present in Africa, and it was therefore recommended that adequate prevention and control of these toxic substances in our food system should be encouraged and that appropriate measures must be taken to ensure food safety as well as the enhanced or long-lifespan of the African populace. Governments, research institutions, and non-governmental organizations should tailor the limited resources available to tackle mycotoxin prevalence, as these will offer the best prospects for successful development of a sustainable food system in Africa.

Ecological Niche and Interspecific Competition of Two Frog Species (Pelophylax nigromaculatus and P. chosenicus) in South Korea using the Geographic Information System (지리정보시스템을 이용한 한국산 참개구리와 금개구리의 생태적 지위와 종간 경쟁에 대한 연구)

  • Ahn, Jeong-Yoon;Choi, Seoyun;Kim, Hyeonggeun;Suh, Jae-Hwa;Do, Min Seock
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.363-373
    • /
    • 2021
  • An ecological niche is defined as the specific role of a species influenced by time, space, and other resources. By investigating overlaps between ecological niches of different species, we could estimate the degrees of interspecific competition. Such studies often use geographic information systems (GIS) to discover niche overlaps between species. In this study, we used GIS to estimate the spatial niches of two Korean frog species(Pelophylax nigromaculatus and P. chosenicus). This enabled us to predict their geographic distributions in order to identify their coexistence regions and distribution patterns. The results confirmed that altitude was an important variable for predicting their distribution, with a correlation with their climatic range. Spatial distributions of the two frog species were highly overlapped, as the distribution range for P. nigromaculatus included most of the range of P. chosenicus, showing a sympatric distribution pattern. Within the coexisting regions, however, the presence sites for the two species did not overlap, implying weak competition. To confirm the principal factors influencing their competitive relationship and reasons for their sympatric distribution pattern, we need more detailed in-depth studies on the diverse environmental variables within the regions where the two species coexist. By doing so, we would be able to identify various mechanisms for avoiding competition in sympatric frog species.

Analysis of Climate and Topographical Factors of Economical Forests in Korea to Select the Restoration Safe Site of 5 Dominant Oak Species (참나무 5종의 생태 복원 적지 추정을 위한 경제림 육성단지의 기후와 입지 요인 분석)

  • Lee, Seung-Yeon;Kim, Eui-Joo;Lee, Eung-Pill;Cho, Kyu-Tae;Park, Jae-Hoon;Lee, Young-Keun;Chung, Sang-Hoon;Hong, Yong-Sik;Park, Jin-Hee;Choi, Seung-Se;Kim, Hae-Ran;You, Young-Han
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.4
    • /
    • pp.427-435
    • /
    • 2020
  • The most important thing to successfully restore an oak forest is finding suitable climatic conditions and topographic factors for the oak species to be introduced. In this study, in order to find suitable environmental conditions for the five dominant oak trees on the Korean Peninsula, we carried out analysing the information on the location of forest vegetation on the Korean Peninsula. The range of annual mean temperature of the five oak trees was narrow in the order of Q. mongolica (7.7~14.3℃), Q. variabilis (9.2~13.8℃), Q. acutissima (10.5~14.3℃), Q. serrata (11.4~13.7℃), Q. aliena (11.0~12.9℃). The range of annual precipitation of oaks was narrow in order of Q. mongolica (1072.7~1780.9 mm), Q. variablis (1066.6~1554.9 mm), Q. acustissima (1036.5~1504.8 mm), Q. serrata (1062.6~1504.7 mm). The range of altitude was in order of Q. mongolica (147~1388m), Q. serrata (93~950m), Q. variabilis(90~913m), Q. acustissima (60~516m), Q. aliena (55~465 m). The range of slope was in the order of Q. mongolica (8~56°), Q. variabilis(5~52°), Q. serrata (11~45°), Q. aliena (15~38°), Q. acustissima (16~37°). These results are considered to be very useful in the case of ecological restoration using deciduous oak trees on the Korean Peninsula.

Development of a habitat suitability index for the habitat restoration of Pedicularis hallaisanensis Hurusawa

  • Rae-Ha, Jang;Sunryoung, Kim;Jin-Woo, Jung;Jae-Hwa, Tho;Seokwan, Cheong;Young-Jun, Yoon
    • Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.316-323
    • /
    • 2022
  • Background: We developed a habitat suitability index (HSI) model for Pedicularis hallaisanensis, a Grade II Endangered Species in South Korea. To determine the habitat variables, we conducted a literature review on P. hallaisanensis with a specific focus on the associated spatial factors, climate, topography, threats, and soil factors to derive five environmental factors that influence P. hallaisanensis habitats. The specific variables were defined based on the collected data and consultations with experts in the field, with the validity of each variable tested through field studies. Results: Mt. Seorak had a suitable habitat area of 2.48 km2 for sites with a score of 1 (0.62% of total area) and 0.01 km2 for sites with a score of 0.9. Mt. Bangtae had a suitable habitat area of 0.03 km2 for sites with a score of 1 (0.02% of total area) and 0 km2 for sites with a score of 0.9. Mt. Gaya showed 0.13 km2 of suitable habitat for sites with a score of 1 (0.17% of total area) and 0 km2 for sites with a score of 0.9. Lastly, Mt. Halla showed 3.12 km2 of suitable habitat related to sites with a score of 1 (2.04% of total area) and 4.08 km2 of sites with a score of 0.9 (2.66% of total area). Mt. Halla accounts for 73.1% of the total core habitat area. Considering the climatic, soil, and forest conditions together with standardized collection sites, our results indicate that Mt. Halla should be viewed as a core habitat of P. hallaisanensis. Conclusions: The findings in this study provide useful data for the identification of core habitat areas and potential alternative habitats to prevent the extinction of the endangered species, P. hallaisanensis. Furthermore, the developed HSI model allows for the prediction of suitable habitats based on the ecological niche of a given species to identify its unique distribution and causal factors.