• Title/Summary/Keyword: climate variation

Search Result 652, Processing Time 0.029 seconds

Evaluation of Future Turbidity Water and Eutrophication in Chungju Lake by Climate Change Using CE-QUAL-W2 (CE-QUAL-W2를 이용한 충주호의 기후변화에 따른 탁수 및 부영양화 영향평가)

  • Ahn, So Ra;Ha, Rim;Yoon, Sung Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.2
    • /
    • pp.145-159
    • /
    • 2014
  • This study is to evaluate the future climate change impact on turbidity water and eutrophication for Chungju Lake by using CE-QUAL-W2 reservoir water quality model coupled with SWAT watershed model. The SWAT was calibrated and validated using 11 years (2000~2010) daily streamflow data at three locations and monthly stream water quality data at two locations. The CE-QUAL-W2 was calibrated and validated for 2 years (2008 and 2010) water temperature, suspended solid, total nitrogen, total phosphorus, and Chl-a. For the future assessment, the SWAT results were used as boundary conditions for CE-QUAL-W2 model run. To evaluate the future water quality variation in reservoir, the climate data predicted by MM5 RCM(Regional Climate Model) of Special Report on Emissions Scenarios (SRES) A1B for three periods (2013~2040, 2041~2070 and 2071~2100) were downscaled by Artificial Neural Networks method to consider Typhoon effect. The RCM temperature and precipitation outputs and historical records were used to generate pollutants loading from the watershed. By the future temperature increase, the lake water temperature showed $0.5^{\circ}C$ increase in shallow depth while $-0.9^{\circ}C$ in deep depth. The future annual maximum sediment concentration into the lake from the watershed showed 17% increase in wet years. The future lake residence time above 10 mg/L suspended solids (SS) showed increases of 6 and 17 days in wet and dry years respectively comparing with normal year. The SS occupying rate of the lake also showed increases of 24% and 26% in both wet and dry year respectively. In summary, the future lake turbidity showed longer lasting with high concentration comparing with present behavior. Under the future lake environment by the watershed and within lake, the future maximum Chl-a concentration showed increases of 19 % in wet year and 3% in dry year respectively.

Assessment of Climate Change Impact on Storage Behavior of Chungju and the Regulation Dams Using SWAT Model (SWAT을 이용한 기후변화가 충주댐 및 조정지댐 저수량에 미치는 영향 평가)

  • Jeong, Hyeon Gyo;Kim, Seong-Joon;Ha, Rim
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1235-1247
    • /
    • 2013
  • This study is to evaluate the climate change impact on future storage behavior of Chungju dam($2,750{\times}10^6m^3$) and the regulation dam($30{\times}10^6m^3$) using SWAT(Soil Water Assessment Tool) model. Using 9 years data (2002~2010), the SWAT was calibrated and validated for streamflow at three locations with 0.73 average Nash-Sutcliffe model Efficiency (NSE) and for two reservoir water levels with 0.86 NSE respectively. For future evaluation, the HadCM3 of GCMs (General Circulation Models) data by scenarios of SRES (Special Report on Emission Scenarios) A2 and B1 of the IPCC (Intergovernmental Panel on Climate Change) were adopted. The monthly temperature and precipitation data (2007~2099) were spatially corrected using 30 years (1977~2006, baseline period) of ground measured data through bias-correction, and temporally downscaled by Change Factor (CF) statistical method. For two periods; 2040s (2031~2050), 2080s (2071~2099), the future annual temperature were predicted to change $+0.9^{\circ}C$ in 2040s and $+4.0^{\circ}C$ in 2080s, and annual precipitation increased 9.6% in 2040s and 20.7% in 2080s respectively. The future watershed evapotranspiration increased up to 15.3% and the soil moisture decreased maximum 2.8% compared to baseline (2002~2010) condition. Under the future dam release condition of 9 years average (2002~2010) for each dam, the yearly dam inflow increased maximum 21.1% for most period except autumn. By the decrease of dam inflow in future autumn, the future dam storage could not recover to the full water level at the end of the year by the present dam release pattern. For the future flood and drought years, the temporal variation of dam storage became more unstable as it needs careful downward and upward management of dam storage respectively. Thus it is necessary to adjust the dam release pattern for climate change adaptation.

Wintering Population Change of the Cranes according to the Climatic Factors in Cheorwon, Korea: Effect of the Snow Cover Range and Period by Using MODIS Satellite Data (기후요인에 의한 철원지역 두루미류 월동개체수 변화 - MODIS 위성영상을 이용한 눈 덮임 범위와 지속기간의 영향 -)

  • Yoo, Seung-Hwa;Lee, Ki-Sup;Jung, Hwa-Young;Kim, Hwa-Jung;Hur, Wee-Haeng;Kim, Jin-Han;Park, Chong-Hwa
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.176-187
    • /
    • 2015
  • In this study, we hypothesized that the size of wintering crane population would change due to the climate factors. We assumed that wintering population size would differ by climate values in January, which is the coldest period in year. Especially, White-naped cranes were able to choose wintering site between Cheorwon and other alternative place where snow coverage had low influence, differing from Red crowned cranes. For this reason, we predicted the population size of White-naped cranes would fluctuate according to the extent of snow coverage in Cheorwon. Therefore we used snow coverage data based on MODIS and climate data from KMA (Korea Meteorological Administration) that are generally used. We analyzed the crane's population size in Cheorwon in January from 2002 to 2014. The temperature in the Cheorwon increased from 2002 to wintering period in 2007~ 2008 and went down, showing the lowest temperature in 2011~ 2012. With this phenomenon, warmth index showed the similar pattern with temperature. Amount of newly accumulated snow (the amount of snow that fallen from 0:01 am to 11:29 pm in a day) was low after 2002, but rapidly increased in 2010~ 2011 and 2011~ 2012. The area of snow coverage rapidly declined from 2002 to 2005~ 2006 but suddenly expanded in wintering period in 2009~ 2010 and 2010~ 2011. Wintering population size of the White-naped cranes decreased as snow coverage area increased in January and the highest correlation was found between them, compared to the other climatic factors. However, the number of individuals of Red crowned cranes had little relationship with general climate factors including snow cover range. Therefore it seems that population size of the Red crowned crane varied by factors related with habitat selection such as secure roosting site and area of foraging place, not by climatic factors. In multiple regression analysis, wintering population of White-naped cranes showed significant relationship with logarithmic value of snow cover range and its period. Therefore, it suggests that the population size of the White-naped crane was affected by snow cover range n wintering period and this was because it was hard for them to find out rice grains which are their main food items, buried in snow cover. The population size variation in White-naped cranes was caused by some individuals which left Cheorwon for Izumi where snow cover had little influence on them. The wintering population in Izumi and Cheorwon had negative correlation, implying they were mutually related.

Assessing forest net primary productivity based on a process-based model: Focusing on pine and oak forest stands in South and North Korea (과정기반 모형을 활용한 산림의 순일차생산성 평가: 남북한 소나무 및 참나무 임분을 중심으로)

  • Cholho Song;Hyun-Ah Choi;Jiwon Son;Youngjin Ko;Stephan A. Pietsch;Woo-Kyun Lee
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.400-412
    • /
    • 2023
  • In this study, the biogeochemistry management (BGC-MAN) model was applied to North and South Korea pine and oak forest stands to evaluate the Net Primary Productivity (NPP), an indicator of forest ecosystem productivity. For meteorological information, historical records and East Asian climate scenario data of Shared Socioeconomic Pathways (SSPs) were used. For vegetation information, pine (Pinus densiflora) and oak(Quercus spp.) forest stands were selected at the Gwangneung and Seolmacheon in South Korea and Sariwon, Sohung, Haeju, Jongju, and Wonsan, which are known to have tree nurseries in North Korea. Among the biophysical information, we used the elevation model for topographic data such as longitude, altitude, and slope direction, and the global soil database for soil data. For management factors, we considered the destruction of forests in North and South Korea due to the Korean War in 1950 and the subsequent reforestation process. The overall mean value of simulated NPP from 1991 to 2100 was 5.17 Mg C ha-1, with a range of 3.30-8.19 Mg C ha-1. In addition, increased variability in climate scenarios resulted in variations in forest productivity, with a notable decline in the growth of pine forests. The applicability of the BGC-MAN model to the Korean Peninsula was examined at a time when the ecosystem process-based models were becoming increasingly important due to climate change. In this study, the data on the effects of climate change disturbances on forest ecosystems that was analyzed was limited; therefore, future modeling methods should be improved to simulate more precise ecosystem changes across the Korean Peninsula through process-based models.

Effects of Co-digestate application on the Soil Properties, Leachate and Growth Responses of Paddy Rice (통합혐기소화액의 시용이 벼 생육 및 논토양 환경에 미치는 영향)

  • Hong, Seung-Gil;Shin, Joung-Du;Kwon, Soon-Ik;Park, Woo-Kyun;Lee, Deog-Bae;Kim, Jeong-Gyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.4
    • /
    • pp.31-37
    • /
    • 2010
  • Livestock manures have a potential to be a valuable resource with an efficient treatment. In Korea, 42 million tons of livestock manure were generated in 2008, and 84 % of them were used for compost and liquid fertilizer production. Recently recycling of livestock manure for biogas production through anaerobic digestion is increasing, but its utilization in agriculture is still uncertified. In this study, there was applied co-digestate to the paddy for rice cultivation based on N supplement. Co-digestate was fertilizer fermented with pig slurry and food waste combined with the ratio of 70:30(v:v) in its volumetric basis. For assessing the safety of co-digestate, it was monitored the contents of co-digestate for seasonal variation, resulted in no potential harm to the soil and plant by heavy metals. The results showed that soil applied with co-digestate was increased in exchangeable potassium, copper and zinc mainly due to the high rate of pig slurry in co-digestate applied. Considering high salt content due to the combination with food waste, strict quality assurances are needed for safe application to arable land though it has valuable fertilizer nutrient. Leachate after treatment showed that the concentration of nitrate nitrogen washed out within two weeks. Considering the salt accumulation results in soil, it is highly recommended that the application rate of co-digestate should not exceed the crop fertilization rate based on N supplement. With these results, it was concluded that co-digestate could be used as an alternative fertilizer for chemical fertilizer. More study is needed for the long-term effects of co-digestate application on the soil and water environment.

The Effect of Load Variation on the Performance of an Injection Heat Pump with an Economizer (이코너마이저 적용 열펌프 시스템의 부하변화에 따른 성능 특성 연구)

  • Choi, Jong Min;Park, Yong-Jung;Kang, Shin-Hyung
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.3
    • /
    • pp.1-7
    • /
    • 2014
  • Heat pumps have received a fair amount of attention all over the world for their high efficiency and low environmental impact. Employing heat pumps for residential heating and cooling produces only about 2038 kg-$CO_2$/year, an amount which is less than half that of conventional boiler systems. However, the use of single-stage heat pumps becomes uneconomical when they are operated at very low evaporating temperature or high condensing temperature. Two-stage heat pumps systems can be used successfully for low or high temperature applications. In this paper, the experimental study on the performance of two-stage heat pump with an economizer was executed in heating mode. When the secondary fluid inlet temperature to the indoor heat exchanger increased, the COP enhancement rate of two-stage heat pump with an economizer was increased. For all outdoor inlet temperature conditions, the performance of the heat pump with an economizer was higher than it without an economizer.

Performance Characteristics of a Vapor Injection Heat Pump System with Different Sub-cooler Capacity (과냉각 열교환기 용량 변화에 따른 인젝션 히트펌프의 성능 특성)

  • Choi, Jong Min;Park, Yong-Jung;Kang, Shin-Hyung
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.3
    • /
    • pp.17-23
    • /
    • 2014
  • One major breakthrough in the field of heating, ventilation and air conditioning has been the development of heat pumps. Heat pump systems offer economic alternatives for recovering heat from different sources for use in various industrial, commercial and residential applications. In recent years, the heat pump has been tipped to have a very good potential for hot water production. This paper investigated the performance of a vapor injection heat pump with the variation of sub-cooler capacity at heating mode. The heating capacity of the vapor injection heat pump slightly increased with an increment of sub-cooler capacity, while COP didn't increase continuously. The 20% capacity of sub-cooler comparing with system capacity could be used as a standard to select sub-cooler capacity.

The Analysis on Maximum Output Power Characteristics of Crystalline Silicon Photovoltaic Module by Change of Environmental Effects (환경변화 요인에 따른 결정질 실리콘 태양전지모듈의 최대출력 특성 분석)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.23-28
    • /
    • 2007
  • In this study, we analyzed the maximum output power characteristics of crystalline silicon photovoltaic module by change of environmental effects. The electrical, optical and thermal property of PV modules were investigated during outdoor test period about 70 days. There was a fluctuation in maximum output power by change in transmittance caused by environment effects like rain, snow and dust. The effects of external environmental change were analyzed using climate data. Also local thermal temperature variation and transmittance imbalance on surface of PV module which might lead degradation of constituent material were detected using infrared camera. The further analysis is describe in the following paper.

Impact of future climate change on UK building performance

  • Amoako-Attah, Joseph;B-Jahromi, Ali
    • Advances in environmental research
    • /
    • v.2 no.3
    • /
    • pp.203-227
    • /
    • 2013
  • Global demand for dwelling energy and implications of changing climatic conditions on buildings confront the built environment to build sustainable dwellings. This study investigates the variability of future climatic conditions on newly built detached dwellings in the UK. Series of energy modelling and simulations are performed on ten detached houses to evaluate and predict the impact of varying future climatic patterns on five building performance indicators. The study identifies and quantifies a consistent declining trend of building performance which is in consonance with current scientific knowledge of annual temperature change prediction in relations to long term climatic variation. The average percentage decrease for the annual energy consumption was predicted to be 2.80, 6.60 and 10.56 for 2020s, 2050s and 2080s time lines respectively. A similar declining trend in the case of annual natural gas consumption was 4.24, 9.98 and 16.1, and that for building emission rate and heating demand were 2.27, 5.49 and 8.72 and 7.82, 18.43 and 29.46 respectively. The study further analyse future heating and cooling demands of the three warmest months of the year and ascertain future variance in relative humidity and indoor temperature which might necessitate the use of room cooling systems to provide thermal comfort.

Analysis of Heating and Cooling Load Profile According to the Window Retrofit in an Old School Building (노후 학교건물의 창호 교체에 따른 부하분석)

  • Lee, Ye Ji;Kim, Joo Wook;Song, Doo Sam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.9
    • /
    • pp.455-462
    • /
    • 2017
  • The purpose of this study is to analyze heating and cooling load variation due to envelope retrofits in an old school building. In a previous study, envelope retrofit of an old school building resulted in annual energy consumption reduction. However, cooling energy consumption increased with the envelope retrofit. This is because of high internal heat generation rates in school buildings and internal heat cannot escape through windows or walls when the envelope's thermal performance improves. To clarify this assumption, thermal performance changes due to envelope retrofits were analyzed by simulation. Results revealed indoor temperature and inner window surface temperature increased with high insulation level of windows. Indoor heat loss through windows by conduction, convection and radiation decreased and resulted in an increase of cooling load in an old school building. From results of this study, energy saving impact of envelope retrofits in an old school building may not be significant because of high internal heat gain level in school buildings. In case of replacing windows in school buildings, local climate and internal heat gain level should be considered.