• 제목/요약/키워드: climate variation

Search Result 649, Processing Time 0.03 seconds

Adaptive Reconstruction of NDVI Image Time Series for Monitoring Vegetation Changes (지표면 식생 변화 감시를 위한 NDVI 영상자료 시계열 시리즈의 적응 재구축)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • Irregular temporal sampling is a common feature of geophysical and biological time series in remote sensing. This study proposes an on-line system for reconstructing observation image series including bad or missing observation that result from mechanical problems or sensing environmental condition. The surface parameters associated with the land are usually dependent on the climate, and many physical processes that are displayed in the image sensed from the land then exhibit temporal variation with seasonal periodicity. An adaptive feedback system proposed in this study reconstructs a sequence of images remotely sensed from the land surface having the physical processes with seasonal periodicity. The harmonic model is used to track seasonal variation through time, and a Gibbs random field (GRF) is used to represent the spatial dependency of digital image processes. In this study, the Normalized Difference Vegetation Index (NDVI) image was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula, and the adaptive reconstruction of harmonic model was then applied to the NDVI time series from 1996 to 2000 for tracking changes on the ground vegetation. The results show that the adaptive approach is potentially very effective for continuously monitoring changes on near-real time.

Conservation Biology of Endangered Plant Species in the National Parks of Korea with Special Reference to Iris dichotoma Pall. (Iridaceae)

  • So, Soonku;Myeong, Hyeon-Ho;Kim, Tae Geun;Oh, Jang-Geun;Kim, Ji-young;Choi, Dae-hoon;Yun, Ju-Ung;Kim, Byung-Bu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.32-32
    • /
    • 2019
  • The aim of this study was to provide basic guidelines for conservation and management of endangered plants in the national parks of Korea. Iris dichotoma Pall. (Iridaceae), which is a popular garden plant, is considered a second-class endangered species by Korean government and it is listed as a EN (Endangered) species in Red Data Book of Korea. We analyzed ecological conditions of I. dichotoma habitats based on vegetation properties and soil characteristics. This species which is known to inhabit in grassland adjacent to the ocean of lowlands slope and its population was located at an elevation of 8 m to 11 m. In the study sites, the mean of soil organic matter, total nitrogen and soil pH were 6.16%, 0.234% and 5.39 respectively. Additionally, the genetic variation and structure of three populations were assessed using ISSR (Inter Simple Sequence Repeat) markers. The genetic diversity of I. dichotoma (P = 59.46%, H = 0.206, S = 0.310) at the species level was relatively high. Analysis of molecular variance (AMOVA) showed 82.1% of the total genetic diversity was occurred in within populations and 17.9% variation among populations. Lastly, we developed predicted distribution model based on climate and topographic factors by applying SDMs (Species Distribution Models). Consequently, current status of I. dichotoma habitats is limited with natural factors such as the increase of the coverage rate of the herbs due to ecological succession. Therefore, it is essential to establish in situ and ex situ conservation strategies for protecting natural habitats and to require exploring potential and alternative habitats for reintroduction.

  • PDF

A unique genetic lineage at the southern coast of China in the agar-producing Gracilaria vermiculophylla (Gracilariales, Florideophyceae)

  • Hu, Zi-Min;Liu, Ruo-Yu;Zhang, Jie;Duan, De-Lin;Wang, Gao-Ge;Li, Wen-Hong
    • ALGAE
    • /
    • v.33 no.3
    • /
    • pp.269-278
    • /
    • 2018
  • Ocean warming can have significant negative impacts on population genetic diversity, local endemism and geographical distribution of a wide range of marine organisms. Thus, the identification of conservation units with high risk of extinction becomes an imperative task to assess, monitor, and manage marine biodiversity for policy-makers. Here, we surveyed population structure and genetic variation of the red seaweed Gracilaria vermiculophylla along the coast of China using genome-based amplified fragment length polymorphism (AFLP) scanning. Regardless of analysis methods used, AFLP consistently revealed a south to north genetic isolation. Populations at the southern coast of China showed unique genetic variation and much greater allelic richness, heterozygosity, and average genetic diversity than the northern. In particular, we identified a geographical barrier that may hinder genetic exchange between the two lineages. Consequently, the characterized genetic lineage at the southern coast of China likely resulted from the interplay of post-glacial persistence of ancestral diversity, geographical isolation and local adaptation. In particular, the southern populations are indispensable components to explore evolutionary genetics and historical biogeography of G. vermiculophylla in the northwestern Pacific, and the unique diversity also has important conservation value in terms of projected climate warming.

Detection of Levee Displacement and Estimation of Vulnerability of Levee Using Remote Sening (원격탐사를 이용한 하천 제방 변위량 측정과 취약지점 선별)

  • Bang, Young Jun;Jung, Hyo Jun;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.1
    • /
    • pp.41-50
    • /
    • 2021
  • As a method of predicting the displacement of river levee in advance, Differential Interferometry (D-InSAR) kind of InSAR techniques was used to identify weak points in the area of the levee collapes near Gumgok Bridge (Somjin River) in Namwon City, which occurred in the summer of 2020. As a result of analyzing the displacement using five images each in the spring and summer of 2020, the Variation Index (V) of area where the collapse occurred was larger than that of the other areas, so the prognostic sysmptoms was detected. If the levee monitoring system is realized by analyzing the correlations with displacement results and hydrometeorological factors, it will overcome the existing limitations of system and advance ultra-precise, automated river levee maintenance technology and improve national disaster management.

Spatial distribution and temporal variation of hydrogeochemistry in coastal lagoons and groundwater on the eastern area of korea

  • Chanyoung Jeong;Soo Min Song;Woo-Hyun Jeon;Hee Sun Moon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.247-247
    • /
    • 2023
  • Coastal lagoons play a crucial role in water exchange, water quality, and biodiversity. It is essential to monitor and understand the dynamics of hydrogeochemistry in lagoon water and its groundwater to preserve and sustainably manage the groundwater-dependent ecosystems like coastal lagoons. This study investigated the spatial and temporal hydrogeochemical characteristics of coastal lagoon (Songjiho) and groundwater on the east coast of Korea. The concentrations of major ions, water isotopes, and nutrients (nitrogen and dissolved organic carbon) in lagoon water and groundwater were periodically monitored for one year. The study revealed that major ions and total dissolved solids (TDS) concentration were higher at deeper depths of aquifers and closer to the coastal area. The hydrogeochemical characteristics of coastal lagoon and groundwater chemistry were classified into two types, Ca-Mg-HCO3 and Na-Cl, based on their spatial location from inland to coastal area. Moreover, the hydrogeochemical characteristics of coastal lagoons and groundwater varied significantly depending on the season. During the wet season, the increased precipitation and evaporation lead to changes in water chemistry. As a result, the total organic carbon (TOC) of coastal lagoons increases during this season, likely due to increased runoff by rainfall whereas the variation of chemical compositions in the lagoon and groundwater were not significant because there is reduced precipitation, resulting in stable water levels and during the dry season. The study emphasizes the impact of spatial distribution and seasonal changes in precipitation, evaporation, and river discharge on the hydrogeochemical characteristics of the coastal aquifer and lagoon system. Understanding these impacts is crucial for managing and protecting coastal lagoons and groundwater resources.

  • PDF

DNA Sequence Variation of Candidate Gene for Salt Tolerance in Soybean Mutant

  • Chang Yeok Moon;Byeong Hee Kang;Woon Ji Kim;Sreeparna Chowdhury;Sehee Kang;Seo Young Shin;Wonho Lee;Hyeon-Seok Lee;Bo-Keun Ha
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.259-259
    • /
    • 2022
  • Soil salinity is a major factor that reduces crop yields. The amount of soil affected by salinity is about 83 million hectares (FAO 2000), which is increasing due to the effects of climate change. In soybean [Glycine max (L.) Merr.], nutritional properties such as protein, starch, and sucrose content together with biomass and yield tends to reduce due to excessive salt. As a result of QTL mapping using the 169 F2:3 population from the KA-1285 (salt-tolerant) × Daepung (salt-sensitive) in a previous study, two major QTLs (Gm03_39796778 and Gm03_40600088) related to salt tolerance were found on chromosome 3. In this study, the CDS region of the Gmsalt3 gene was analyzed using the ABI 3730x1 DNA Analyzer (Macrogen, Korea). The sequence of Gmsalt3 gene in KA-1285 was compared with Williams 82.a4.vl and PI483463 (Glycine soja). Two transversions were found at exon6 in KA-1285 and PI483463. Currently, whole genome sequencing and variation analysis using the Illumine Novaseq 6000 machine (Illumina, USA) are in progress. The results of this study can provide useful molecular markers for the selection of salt-tolerant soybeans and can be used as basic data for future salt-tolerant gene research.

  • PDF

Outlook on Variation of Water Resources in Korea under SRES A2 Scenario (A2 시나리오에 따른 국내 수자원의 변동성 전망)

  • Bae, Deg-Hyo;Jung, Il-Won;Lee, Byong-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.12
    • /
    • pp.921-930
    • /
    • 2007
  • The objective of this study is to present temporal-spatial variation of water resources on climate change impacts using the IPCC SRES A2 scenario and dynamical downscaling of the results (using the MM5 model with a resolution of 27km by 27km) at 139 sub-basins in Korea. The variation of runoff shows differences in the change of rate according to the each sub-basins and analysis durations. It has increased in the sub-basins located in Han river basin and east part of it, the other basins have decreased. In seasonal analysis, runoff in autumn and winter have increased, while in spring and summer have decreased. The results of frequency analyzing classified runoff(Low flow(Q$\leq$5mm), Normal flow(5$\geq$100mm)) show that low flow increase in most of the sub-basins for 2031-2060 and 2061-2090. In the case of high flow, it have higher frequency ranging from -100% to 500% than low flow. Regardless of the variation of mean runoff, maximum discharge appeared to be increase in process of time. The regression method is used to figure out the relationship between the rate of runoff change and mean temperature, mean precipitation under A2 scenario. The mean actual evapotranspirations from the regression equations increased by 3.4$\sim$5.3% for the change of $1^{\circ}C$. Also, for the precipitation change of $\pm$10%, runoff variety range is -18.2$\sim$+12.4% in Han River, -21.6$\sim$+14.6% in Nakdong River, -17.5$\sim$+11.5% in Gum River, -18.4$\sim$+10.6% in Sumjin River, -19.9$\sim$+12.7% Youngsan River basin.

The Characteristics and Seasonal Variations of OC and EC for PM2.5 in Seoul Metropolitan Area in 2014 (서울지역의 PM2.5 중 OC와 EC의 특성 및 계절적 변화에 관한 연구)

  • Park, Jong Sung;Song, In Ho;Park, Seung Myung;Shin, Hyejung;Hong, Youdeog
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.6
    • /
    • pp.578-592
    • /
    • 2015
  • To investigate characteristics and seasonal variations of carbonaceous species for $PM_{2.5}$ in Seoul metropolitan area, Korea, we measured organic carbon (OC) and elemental carbon (EC) from January 2014 to December 2014 using a semi-continuous OC/EC Analyzer (Model-4, Sunset Lab.). Mean concentrations of OC and EC were estimated $4.1{\pm}2.7{\mu}g/m^3$ and $1.6{\pm}1.0{\mu}g/m^3$, respectively. The annual averaged OC/EC ratio was $2.9{\pm}2.7$. Concentrations of OC and EC comprised 13% and 5% of $PM_{2.5}$ and the mass fraction of both was the highest in fall. OC and EC showed similar trend in seasonal variations. Concentrations of those showed a clear seasonal variation with the highest in winter and the lowest in summer. The correlations between the two were the best during the winter ($r^2=0.88$). As results of carbonaceous species analysis, the dominant factor in view of fine particle ($PM_{2.5}$) is primary emission source such as mobile, fossil fuel combustion during commute time(08:00~10:00 or 17:00~21:00) and winter season. Continuous monitoring of atmospheric carbonaceous species is essential to provide the science-based data to policy-maker establishing the air quality improvement policy.

Influence of Climate Factors and PM10 on Rotaviral Infection: A Seasonal Variation Study (Rotavirus 감염의 연도별 유행시기의 변동양상 및 기후요소와 PM10과의 관계)

  • Im, Hae-Ra;Jeon, In-Sang;Tchah, Hann;Im, Jeong-Soo;Ryoo, Eell;Sun, Yong-Han;Cho, Kang-Ho;Im, Ho-Joon;Lee, Gwang-Hoon;Lee, Hak-Soo;Kang, Yune-Jeung;Noh, Yi-Gn
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.6 no.2
    • /
    • pp.120-128
    • /
    • 2003
  • Purpose: Recently, while the authors were experiencing that the epidemic period of rotaviral infection happened more in the early spring, we tried to find out how the outbreaks of rotaviral infection are changing in detail depending on the weather condition since it has something to do with the climate factors and PM10. Methods: Fourteen hundreds seventy nine patients who were proved to be positive to rotavirus were chosen among children less than 5 years old from January 1995 to June 2003. Among various climate factors, monthly average temperature, humidity, rainfall and PM10 were selected. Results: Rotaviral infection was most active in 2002 as 309 (20.9%) patients. It has been the spring that is the most active period of rotaviral infection since 2000. The temperature (RR=0.9423, CI=0.933424~0.951163), rainfall (RR=1.0024, CI=1.001523~1.003228) and PM10 (RR=1.0123, CI=1.009385~1.015248) were significantly associated with the monthly distribution of rotaviral infection. Conclusion: Through this study we determined that the epidemic period of rotaviral infection is changed to spring, which is different from the usual seasonal periods such as late fall or winter as reported in previous articles. As increased PM10 which could give serious influence to the human body, and changing pattern of climate factors such as monthly average temperature and rainfall have something to do with the rotaviral infection, we suppose that further study concerning this result is required in the aspects of epidemiology, biology and atmospheric science.

  • PDF

Effects of Co-digestate application on the Soil Properties, Leachate and Growth Responses of Paddy Rice (통합혐기소화액의 시용이 벼 생육 및 논토양 환경에 미치는 영향)

  • Hong, Seung-Gil;Shin, Joung-Du;Kwon, Soon-Ik;Park, Woo-Kyun;Lee, Deog-Bae;Kim, Jeong-Gyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.4
    • /
    • pp.31-37
    • /
    • 2010
  • Livestock manures have a potential to be a valuable resource with an efficient treatment. In Korea, 42 million tons of livestock manure were generated in 2008, and 84 % of them were used for compost and liquid fertilizer production. Recently recycling of livestock manure for biogas production through anaerobic digestion is increasing, but its utilization in agriculture is still uncertified. In this study, there was applied co-digestate to the paddy for rice cultivation based on N supplement. Co-digestate was fertilizer fermented with pig slurry and food waste combined with the ratio of 70:30(v:v) in its volumetric basis. For assessing the safety of co-digestate, it was monitored the contents of co-digestate for seasonal variation, resulted in no potential harm to the soil and plant by heavy metals. The results showed that soil applied with co-digestate was increased in exchangeable potassium, copper and zinc mainly due to the high rate of pig slurry in co-digestate applied. Considering high salt content due to the combination with food waste, strict quality assurances are needed for safe application to arable land though it has valuable fertilizer nutrient. Leachate after treatment showed that the concentration of nitrate nitrogen washed out within two weeks. Considering the salt accumulation results in soil, it is highly recommended that the application rate of co-digestate should not exceed the crop fertilization rate based on N supplement. With these results, it was concluded that co-digestate could be used as an alternative fertilizer for chemical fertilizer. More study is needed for the long-term effects of co-digestate application on the soil and water environment.