• Title/Summary/Keyword: climate variation

Search Result 649, Processing Time 0.029 seconds

Performance Based Evaluation of Concrete Strength and Freeze-Thaw Resistance from Wind Speed - Sunlight Exposure Time Effect (풍속과 일조시간에 따른 콘크리트의 강도 및 동결융해 저항성 성능중심평가)

  • Kim, Tae-Kyun;Choi, Seung-Jai;Choi, Ji-Hun;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.49-58
    • /
    • 2017
  • The phenomena that we experience in everyday life such as snow, rain, wind, and temperature are referred to as weather, and the average state of atmospheric phenomena that occur over a long period of time in a specific region is referred to as climate. In addition, significant variation of climate compared to the average state is referred to as climate change. Concrete structures can have various problems when exposed to elements. Among the problems, the freeze-thaw problem due to extreme climatic factors such as heavy rain and snowfall has become a particularly significant issue recently. The concrete that has been subjected to repeated freeze-thaw rather than too high or low temperature shows serious degradation of durability, and the performance of structures with degraded performance is difficult to recover. Therefore, in this study, concrete durability performance with respect to freeze-thaw from curing conditions change due to wind speed and sunshine exposure time. Concrete freeze-thaw experiment are performed. using wind speed and sunlight exposure time. Also, performance based evaluation through the satisfaction curve based on the freeze-thaw test results are performed.

Assessment of Future Climate Change Impact on Groundwater recharge, Baseflow and Sediment in Steep Sloping Watershed (미래 기후변화에 따른 급경사지 유역에서의 지하수 함양, 기저유출 및 토양유실 평가)

  • Lee, Ji Min;Jung, Younghun;Park, Younshik;Kang, Hyunwoo;Lim, Kyoung Jae;Kim, Hungsoo
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.173-185
    • /
    • 2014
  • Climate change has caused detrimental phenomena such as heavy rainfall which could aggravate soil erosion. Accordingly, it is needed to evaluate the groundwater recharge, baseflow, and soil erosion for the efficient management of water resources and quality. In this study, future climate change scenarios were applied to the H aean-myeon watershed which is a steep sloping watershed in South Korea to analyze groundwater recharge, baseflow, sediment. Also, the variation of groundwater recharge, baseflow, sediment was analyzed according to the change of slope (5 %). Simulated periods were divided into three terms (2013 ~ 2040 years, 2041 ~ 2070 years, 2071 ~ 2100 years). As a result of this study, average groundwater recharge and baseflow increased by 50 %, 42 %, and sediment decreased by 72 %, respectively. In these regards, the suggested method will positively contribute to hydro-ecosystem and reduction of muddy water at a steep sloping watershed.

Assessment on Forest Resources Change using Permanent Plot Data in National Forest Inventory (국가산림자원조사 고정표본점 자료를 활용한 산림자원변화 평가에 관한 고찰)

  • Yim, Jong-Su;Kim, Eun Sook;Kim, Chel Min;Son, Yeong Mo
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.2
    • /
    • pp.239-247
    • /
    • 2015
  • Since 2006, new national forest inventory in Korea has been restructured to assess current status and and monitor the changes in forest resources based on permanent sample plots. The objective of estimate this study is to assess changes in forest resources such as land use/cover categories and forest stand variables. For this study, permanent plot data were collected between 2006-2008 and 2011-2013 in Chungcheongbuk-do, respectively. In order to produce land use/cover change matrix which plays an important role as an activity data for estimating GreenHouse Gas inventory, permanent plots were classified into six land use/cover categories. Additionally, matrixes for assessing the changes in age class and dominant tree species can provide more detailed information. For forest stand variables(tree density, basal area, growing stock, mean diameter at breath height, and mean height), their growth and change were assessed. The periodic annual growth ratios for tree density and basal area were slightly declined whereas that of growing stock was estimated to be about 3.7%. The uncertainty of changes in forest stand variables is less than 5%, except for tree density (RSE: 58%). The variation of tree density is relatively high compared to the other variables.

Assessment of a rain barrel sharing network in Korea using storage-reliability-yield relationship (저류용량-신뢰도-수요량 관계를 이용한 레인배럴 공유 네트워크의 국내 성능 평가)

  • Kwon, Youjeong;Seo, Yongwon;Park, Chang Kun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.961-971
    • /
    • 2020
  • The Intergovernmental Panel on Climate Change (IPCC) reported that the amount of precipitation in South Korea would increase regardless of the reduction of Greenhouse Gas (GHG) emissions. Moreover, the temporal and spatial rainfall variation would also increase in the future. Due to the geographic allocation of Korea, more than 80% of the annual precipitation occurs in the wet season from early July to late September. It is expected that the average precipitation in this period will increase from the Representative Concentration Pathways (RCP) scenario projections. These predictions imply an increased variability of available water resources. Rainwater harvesting system is widely used as an alternative water resources today. This study introduces a RBSN (rain barrel sharing network) as an efficient way to utilize alternative water resources under the RCP scenarios. The concept of RBSN combines individual rainwater harvesting system to a sharing network, which make the whole system more reliable. This study evaluated a RBSN in South Korea composed of four users based on a storage-reliability-yield (SRY) relationship. The study area comprises all 17 provincal areas in South Korea. The result showed a huge benefit from a RBSN in Korea under the historical rainfall condition. Even in the climate change condition, the results showed that a RBSN is still beneficial but the changes in reliability are different depending on provinces in Korea. The results of this study shows that a RBSN is a very effective and alternative measure that can deal with the impacts of climate change in the near future.

The Effects of Climate Factors on the Tree Ring Growth (기후인자가 임목의 연륜생장에 미치는 영향)

  • Yoon, Mihae;Lee, Woo-Kyun;Kim, Moonil
    • Journal of Climate Change Research
    • /
    • v.4 no.3
    • /
    • pp.255-267
    • /
    • 2013
  • This study aims to reveal the relationship between major climatic factors and radial growth in Siu-ri, NamYangJuSi, Kyeonggido. To identify tree growth responses to climatic variation, we used correlation analysis after standardization and cross-dating of tree ring growth. We use the climatic data(monthly mean, minimum, maximum temperature and precipitation) from September of previous year to August of current year. In terms of relationship between mean, minimum, maximum temperature and tree ring growth, negative correlations were observed in September and October of the previous year. In case of Quercus mongolica, negative relationship were appeared in December of the previous year, January and February of present year. When it comes monthly maximum temperature, August and September of present year was negatively correlated with radial growth in the case of Pinus densiflora. We can conclude that reduced soil moisture due to high temperatures causes a water stress that stunts tree growth. In contrast, there are positive correlations in March of present year. These results suggest that high temperatures in March appear to prolong the growing season. Growth was positively correlated with precipitation from October to December of previous year and from May to September of present year. The results suggest that the smooth water supply from precipitation can promote the tree growth.

Preparation and Application of Cultivation Management Map Using Drone - Focused on Spring Chinese Cabbage - (드론 기반의 재배관리 지도 제작 및 활용방안 - 봄배추를 대상으로 -)

  • Na, Sang-il;Lee, Yun-ho;Ryu, Jae-Hyun;Lee, Dong-ho;Shin, Hyoung-sub;Kim, Seo-jun;Cho, Jaeil;Park, Jong-hwa;Ahn, Ho-yong;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.637-648
    • /
    • 2021
  • In order to support the establishment of a farming plan, it is important to preemptively evaluate crop changes and to provide precise information. Therefore, it is necessary to provide customized information suitable for decision-making by farming stage through scientific and continuous monitoring using drones. This study was carried out to support the establishment of the farming plan for ground vegetable. The cultivation management map of each information was obtained from preliminary study. Three cultivation management maps include 'field emergence map', 'stress map' and 'productivity map' reflected spatial variation in the plantation by providing information in units of plants based on 3-dimensions. Application fields of the cultivation management map can be summarized as follows: detect miss-planted, replanting decision, fertilization, weeding, pest control, irrigation schedule, market quality evaluation, harvest schedule, etc.

Effects of Climatic Condition on Stability and Efficiency of Crop Production (농업 기상특성과 작물생산의 효율 및 안전성)

  • Robert H. Shaw
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.296-313
    • /
    • 1982
  • At a time when world population and food supply are in a delicate balance, it is essential that we look at factors to improve this balance. We can alter the environment to better fit the plant's needs, or we can alter the plant to better fit the environment. Improved technology has allowed us to increase the yield level. For moderately detrimental weather events technology has generally decreased the yield variation, yet for major weather disasters the variation has increased. We have raised the upper level, but zero is still the bottom level. As we concentrate the production of particular crops into limited areas where the environment is closest to optimum, we may be increasing the risk of a major weather related disaster. We need to evaluate the degree of variability of different crops, and how weather and technology can interact to affect it. The natural limits of crop production are imposed by important ecological factors. Production is a function of the climate, the soil, and the crop and all activities related to them. In looking at the environment of a crop we must recognize these are individuals, populations and ecosystems. Under intensive agriculture we try to limit the competition to one desired species. The environment is made up of a complex of factors; radiation, moisture, temperature and wind, among others. Plant response to the environment is due to the interaction of all of these factors, yet in attempting to understand them we often examine each factor individually. Variation in crop yields is primarily a function of limiting environmental parameters. Various weather parameters will be discussed, with emphasis placed on how they impact on crop production. Although solar radiation is a driving force in crop production, it often shows little relationship to yield variation. Water may enter into crop production as both a limiting and excessive factor. The effects of moisture deficiency have received much more attention than moisture excess. In many areas of the world, a very significant portion of yield variation is due to variation in the moisture factor. Temperature imposes limits on where crops can be grown, and the type of crop that can be grown in an area. High temperature effects are often combined with deficient moisture effects. Cool temperatures determine the limits in which crops can be grown. Growing degree units, or heat accumulations, have often been used as a means of explaining many temperature effects. Methods for explaining chilling effects are more limited.

  • PDF

Effects of climate change on biodiversity and measures for them (생물다양성에 대한 기후변화의 영향과 그 대책)

  • An, Ji Hong;Lim, Chi Hong;Jung, Song Hie;Kim, A Reum;Lee, Chang Seok
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.474-480
    • /
    • 2016
  • In this study, formation background of biodiversity and its changes in the process of geologic history, and effects of climate change on biodiversity and human were discussed and the alternatives to reduce the effects of climate change were suggested. Biodiversity is 'the variety of life' and refers collectively to variation at all levels of biological organization. That is, biodiversity encompasses the genes, species and ecosystems and their interactions. It provides the basis for ecosystems and the services on which all people fundamentally depend. Nevertheless, today, biodiversity is increasingly threatened, usually as the result of human activity. Diverse organisms on earth, which are estimated as 10 to 30 million species, are the result of adaptation and evolution to various environments through long history of four billion years since the birth of life. Countlessly many organisms composing biodiversity have specific characteristics, respectively and are interrelated with each other through diverse relationship. Environment of the earth, on which we live, has also created for long years through extensive relationship and interaction of those organisms. We mankind also live through interrelationship with the other organisms as an organism. The man cannot lives without the other organisms around him. Even though so, human beings accelerate mean extinction rate about 1,000 times compared with that of the past for recent several years. We have to conserve biodiversity for plentiful life of our future generation and are responsible for sustainable use of biodiversity. Korea has achieved faster economic growth than any other countries in the world. On the other hand, Korea had hold originally rich biodiversity as it is not only a peninsula country stretched lengthily from north to south but also three sides are surrounded by sea. But they disappeared increasingly in the process of fast economic growth. Korean people have created specific Korean culture by coexistence with nature through a long history of agriculture, forestry, and fishery. But in recent years, the relationship between Korean and nature became far in the processes of introduction of western culture and development of science and technology and specific natural feature born from harmonious combination between nature and culture disappears more and more. Population of Korea is expected to be reduced as contrasted with world population growing continuously. At this time, we need to restore biodiversity damaged in the processes of rapid population growth and economic development in concert with recovery of natural ecosystem due to population decrease. There were grand extinction events of five times since the birth of life on the earth. Modern extinction is very rapid and human activity is major causal factor. In these respects, it is distinguished from the past one. Climate change is real. Biodiversity is very vulnerable to climate change. If organisms did not find a survival method such as 'adaptation through evolution', 'movement to the other place where they can exist', and so on in the changed environment, they would extinct. In this respect, if climate change is continued, biodiversity should be damaged greatly. Furthermore, climate change would also influence on human life and socio-economic environment through change of biodiversity. Therefore, we need to grasp the effects that climate change influences on biodiversity more actively and further to prepare the alternatives to reduce the damage. Change of phenology, change of distribution range including vegetation shift, disharmony of interaction among organisms, reduction of reproduction and growth rates due to odd food chain, degradation of coral reef, and so on are emerged as the effects of climate change on biodiversity. Expansion of infectious disease, reduction of food production, change of cultivation range of crops, change of fishing ground and time, and so on appear as the effects on human. To solve climate change problem, first of all, we need to mitigate climate change by reducing discharge of warming gases. But even though we now stop discharge of warming gases, climate change is expected to be continued for the time being. In this respect, preparing adaptive strategy of climate change can be more realistic. Continuous monitoring to observe the effects of climate change on biodiversity and establishment of monitoring system have to be preceded over all others. Insurance of diverse ecological spaces where biodiversity can establish, assisted migration, and establishment of horizontal network from south to north and vertical one from lowland to upland ecological networks could be recommended as the alternatives to aid adaptation of biodiversity to the changing climate.

Comparison a Forest Fire Spread variation according to weather condition change (기후조건 변화에 따른 산불확산 변화 비교)

  • Lee, Si-Young;Park, Houng-Sek
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.490-494
    • /
    • 2008
  • We simulated a forest fire which was occurred in Yangyang area on 2005 and compared a results between two different weather conditions(real weather condition and mean weather condition since 1968) using FARSITE, which is a forest fire spread simulator for preventing and predicting fire in USDA. And, we researched a problem in the transition for introducing, so we serve the basic method for prevention and attacking fire. In the result, severe weather condition on 2005 effected a forest fire behavior. The rate of spread under real weather condition was about 4 times faster than mean weather condition. Damaged area was about 10 time than mean weather condition. Therefore, Climate change will make a more sever fire season. As we will encounter to need for accurate prediction in near future, it will be necessary to predict a forest fire linked with future wether and fuel condition.

  • PDF

Bayesian Spatial Modeling of Precipitation Data

  • Heo, Tae-Young;Park, Man-Sik
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.2
    • /
    • pp.425-433
    • /
    • 2009
  • Spatial models suitable for describing the evolving random fields in climate and environmental systems have been developed by many researchers. In general, rainfall in South Korea is highly variable in intensity and amount across space. This study characterizes the monthly and regional variation of rainfall fields using the spatial modeling. The main objective of this research is spatial prediction with the Bayesian hierarchical modeling (kriging) in order to further our understanding of water resources over space. We use the Bayesian approach in order to estimate the parameters and produce more reliable prediction. The Bayesian kriging also provides a promising solution for analyzing and predicting rainfall data.