• Title/Summary/Keyword: climate model

Search Result 2,567, Processing Time 0.028 seconds

Low-Flow Projection according to the Actual Evapotranspiration scenarios under the Climate Change -Chungju Dam Case- (기후변화 실제증발산 시나리오에 따른 갈수량전망 - 충주댐 사례 -)

  • Sun, HoYoung;Kang, BooSik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.104-104
    • /
    • 2018
  • 이수안전도의 기준이 되는 갈수량에 대해 기후변화 시나리오에 따른 전망을 제시하였다. 충주 댐 유역을 대상으로 기준기간(1986~2000년)에서의 기상청의 관측 기상자료와 IPCC 보고서의 RCP 4.5/8.5 시나리오를 대상으로 CMIP5(Coupled Model Intercomparison Project Phase 5)에서 제공하는 기후변화 자료 중 5개의 모델(ACCESS1.3 CanESM2, CNRM-CM5, GFDL-ESM2G, HadGEM2-AO)의 기준기간과 미래기간(2011~2100년)의 기상자료를 수집하였다. 기후변화 자료는 정상성/비정상성 분위사상법과 베이지안 모델 평균기법을 통해 불확실성과 통계적 오차를 저감하였다. 미래기간에서, 강우는 RCP 4.5에서 1.74mm/year, RCP 8.5에서 3.22mm/year, 실제증발산은 RCP 4.5에서 1.09mm/year, RCP 8.5에서 1.78mm/year의 증가율을 보였다. 실제증발산을 입력자료로 활용할 수 있도록 IHACRES모델의 CMD(Catchment Moisture Deficit) 비선형 모듈의 매개변수를 변이하여 유효강우량 산정 과정을 개선하였다. 기준기간에서 관측유량자료와 IHACRES의 시뮬레이션을 통해 산정된 유량자료의 R-squared는 0.65이다. 기준기간에서의 매개변수를 고정하여 미래기간의 유량을 산정하고 유황분석을 통해 갈수량 전망하였다. 유량은 RCP 4.5에서 4.41MCM/year, RCP 8.5에서 9.66MCM/year의 증가율을 보였다. 갈수량은 RCP 4.5에서 0.30MCM/year, RCP 8.5에서 -0.47MCM/year의 증감율을 보였다. 연간 강수량 대비 실제증발산의 비율의 추세분석 결과, RCP 4.5에서는 홍수기에는 0.014%/year, 비홍수기에는 0.027%/year의 증가율을 보이며 거의 변화가 없는 추세를 확인할 수 있었다. RCP 8.5의 홍수기에는 -0.042%/year, 비홍수기에서는 0.167%/year의 증감율을 보이며 홍수기에는 실제증발산에 비해 강수량의 증가가 확연히 보였으며 비홍수기에는 강수량에 비해 실제증발산의 증가가 뚜렷이 확인되었다. RCP 8.5에서 비홍수기의 강수량 대비 실제증발산의 증가가 갈수량의 감소로 반영된 것을 확인할 수 있었다. 미래기간의 RCP 4.5/8.5에서 실제증발산의 증가로 인하여 강수량이 증가함에 따라 유입량이 증가함에도 불구하고 갈수량의 증가로 이어지지 않았다. 미래 갈수량의 감소는 하천의 건전성과 이수안전도의 위협이 될 수 있다.

  • PDF

Health Risk Assessment with Source Apportionment of Ambient Volatile Organic Compounds in Seoul by Positive Matrix Factorization (수용체 모델(PMF)를 이용한 서울시 대기 중 VOCs의 배출원에 따른 위해성평가)

  • Kwon, Seung-Mi;Choi, Yu-Ri;Park, Myoung-Kyu;Lee, Ho-Joon;Kim, Gwang-Rae;Yoo, Seung-Sung;Cho, Seog-Ju;Shin, Jin-Ho;Shin, Yong-Seung;Lee, Cheolmin
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.384-397
    • /
    • 2021
  • Background: With volatile organic compounds (VOCs) containing aromatic and halogenated hydrocarbons such as benzene, toluene, and xylene that can adversely affect the respiratory and cardiovascular systems when a certain concentration is reached, it is important to accurately evaluate the source and the corresponding health risk effects. Objectives: The purpose of this study is to provide scientific evidence for the city of Seoul's VOC reduction measures by confirming the risk of each VOC emission source. Methods: In 2020, 56 VOCs were measured and analyzed at one-hour intervals using an online flame ionization detector system (GC-FID) at two measuring stations in Seoul (Gangseo: GS, Bukhansan: BHS). The dominant emission source was identified using the Positive Matrix Factorization (PMF) model, and health risk assessment was performed on the main components of VOCs related to the emission source. Results: Gasoline vapor and vehicle combustion gas are the main sources of emissions in GS, a residential area in the city center, and the main sources are solvent usage and aged VOCs in BHS, a greenbelt area. The risk index ranged from 0.01 to 0.02, which is lower than the standard of 1 for both GS and BHS, and was an acceptable level of 5.71×10-7 to 2.58×10-6 for carcinogenic risk. Conclusions: In order to reduce the level of carcinogenic risk to an acceptable safe level, it is necessary to improve and reduce the emission sources of vehicle combustion and solvent usage, and eco-car policies are judged to contribute to the reduction of combustion gas as well as providing a response to climate change.

A Study on the Estimation of the Threshold Rainfall in Standard Watershed Units (표준유역단위 한계강우량 산정에 관한 연구)

  • Choo, Kyung-Su;Kang, Dong-Ho;Kim, Byung-Sik
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.2
    • /
    • pp.1-11
    • /
    • 2021
  • Recently, in Korea, the risk of meteorological disasters is increasing due to climate change, and the damage caused by rainfall is being emphasized continuously. Although the current weather forecast provides quantitative rainfall, there are several difficulties in predicting the extent of damage. Therefore, in order to understand the impact of damage, the threshold rainfall for each watershed is required. The damage caused by rainfall occurs differently by region, and there are limitations in the analysis considering the characteristic factors of each watershed. In addition, whenever rainfall comes, the analysis of rainfall-runoff through the hydrological model consumes a lot of time and is often analyzed using only simple rainfall data. This study used GIS data and calculated the threshold rainfall from the threshold runoff causing flooding by coupling two hydrologic models. The calculation result was verified by comparing it with the actual case, and it was analyzed that damage occurred in the dangerous area in general. In the future, through this study, it will be possible to prepare for flood risk areas in advance, and it is expected that the accuracy will increase if machine learning analysis methods are added.

On Study of Runoff Analysis Using Satellite Information (위성자료를 이용한 유출해석에 관한 연구)

  • Kang, Dong Ho;Jeung, Se Jin;Kim, Byung Sik
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.2
    • /
    • pp.13-23
    • /
    • 2021
  • This study intended to assess the reliability of topographic data using satellite imaging data. The topographical data using actual instrumentation data and satellite image data were established and applied to the rainfall-leak model, S-RAT, and the topographical data and outflow data were compared and analyzed. The actual measurement data were collected from the Water Resources Management Information System (WAMIS), and satellite image data were collected from MODIS observation sensors mounted on Terra satellites. The areas subject to analysis were selected for two rivers with more than 80% mountainous areas in the Han River basin and one river basin with more than 7% urban areas. According to the analysis, the difference between instrumentation data and satellite image data was up to 50% for peak floods and up to 17% for flood totals in rivers with high mountains, but up to 13% for peak floods and up to 4% for flood totals. The biggest difference in the video data is Landuse, which shows that MODIS satellite images tend to be recognized as cities up to 60% or more in urban streams compared to WAMIS instrumentation data, but MODIS satellite images are found to be less than 5% error in forest areas.

A Study on Improvement of Hydrologic Cycle by Selection of LID Technology Application Area -in Oncheon Stream Basin- (LID 기술 적용 지역 선정에 따른 물순환 개선 연구 -온천천 유역을 대상으로-)

  • Kim, Jae-Moon;Baek, Jong-Seok;Shin, Hyun-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.545-553
    • /
    • 2021
  • The frequency by water disaster in urban areas are increasing continuously due to climate change and urbanization. Countermeasures are being conducted to reduce the damage caused by water disasters. An analysis based on permeability, one of the parameters that affect runoff, is needed to predict quantitative runoff in urban watersheds and study runoff reduction. In this study, the SWAT model was simulated for the oncheon stream basin, a representative urban stream in Busan. The permeability map was prepared by calculating the CN values for each hydrologic response unit. Based on the permeability map prepared, EPA SWMM analyzed the effect of LID technology application on the water cycle in the basin for short-term rainfall events. The LID element technology applied to the oncheon stream basin was rooftop greening in the residential complex, and waterproof packaging was installed on the road. The land cover status of the land selected based on the permeability map and the application of LID technology reduced the outflow rate, peak flow rate, and outflow rate and increased the infiltration. Hence, LID technology has a positive effect on the water cycle in an urban basin.

Relationship Analysis of Reference Evapotranspiration and Heating Load for Water-Energy-Food Nexus in Greenhouse (물-에너지-식량 넥서스 분석을 위한 시설재배지의 기준작물증발산량과 난방 에너지 부하 관계 분석)

  • Kim, Kwihoon;Yoon, Pureun;Lee, Yoonhee;Lee, Sang-Hyun;Hur, Seung-Oh;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.23-32
    • /
    • 2019
  • Increasing crop production with the same amount of resources is essential for enhancing the economy in agriculture. The first prerequisite is to understand relationships between the resources. The concept of WEF (Water-Energy-Food) nexus analysis was first introduced in 2011, which helps to interpret inter-linkages among the resources and stakeholders. The objective of this study was to analyze energy-water nexus in greenhouse cultivation by estimating reference evapotranspiration and heating load. For the estimation, this study used the physical model to simulate the inside temperature of the agricultural greenhouse using heating, solar radiation, ventilated and transferred heat losses as input variables. For estimating reference evapotranspiration and heating load, Penman-Monteith equation and seasonal heating load equation with HDH (Heating Degree-Hour) was applied. For calibration and validation of simulated inside temperature, used were hourly data observed from 2011 to 2012 in multi-span greenhouse. Results of the simulation were evaluated using $R^2$, MAE and RMSE, which showed 0.75, 2.22, 3.08 for calibration and 0.71, 2.39, 3.35 for validation respectively. When minimum setting temperature was $12^{\circ}C$ from 2013 to 2017, mean values of evapotranspiration and heating load were 687 mm/year and 2,147 GJ/year. For $18^{\circ}C$, Mean values of evapotranspiration and heating load were 707 mm/year and 5,616 GJ/year. From the estimation, the relationship between water and heat energy was estimated as 1.0~2.6 GJ/ton. Though additional calibrations with different types of greenhouses are necessary, the results of this study imply that they are applicable when evaluating resource relationship in the greenhouse cultivation complex.

The Study for Analysis of Impact Force of Debris Flow According to the Location of Check Dam (사방댐 위치변화에 따른 토석류의 충격력 해석에 관한 연구)

  • Kim, Sung-Duk;Lee, Ho-Jin;Chang, Hyung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.409-418
    • /
    • 2019
  • Debris flows occur in mountainous areas due to heavy rains resulting from climate change and result in disasters in the downstream area. The purpose of this study is to estimate the impact force of a debris flow when a check dam according is installed in various locations in the channel of a highly mountainous area. A Finite Differential Element Method (FDM) model was used to simulate the erosion and deposition based on the equation for the mass conservation and momentum conservation while considering the continuity of the fluid. The peak impact force from the debris flow occurred at 0 to 5 sec and 15 to 20 sec. When the supplied water discharge was increased, greater peak impact force was generated at 16 to 19 sec. This means that when increasing the water supply, the velocity of the debris flow became faster, which results in increased energy of the consolidation between the particles of the water and the sediment made. If a number of check dams were to be set up, it would be necessary to investigate the impact force at each location of the check dam. The results of this study could provide useful information in predicting the impact force of the debris flow and in installing the check dams in appropriate locations.

A Study on Management of Student Retention Rate Using Association Rule Mining (연관관계 규칙을 이용한 학생 유지율 관리 방안 연구)

  • Kim, Jong-Man;Lee, Dong-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.6
    • /
    • pp.67-77
    • /
    • 2018
  • Currently, there are many problems due to the decline in school-age population. Moreover, Korea has the largest number of universities compared to the population, and the university enrollment rate is also the highest in the world. As a result, the minimum student retention rate required for the survival of each university is becoming increasingly important. The purpose of this study was to examine the effects of reducing the number of graduates of education and the social climate that prioritizes employment. And to determine what the basic direction is for students to manage the student retention rate, which can be maintained from admission to graduation, to determine the optimal input variables, Based on the input parameters, we will make associative analysis using apriori algorithm to collect training data that is most suitable for maintenance rate management and make base data for development of the most efficient Deep Learning module based on it. The accuracy of Deep Learning was 75%, which is a measure of graduation using decision trees. In decision tree, factors that determine whether to graduate are graduated from general high school and students who are female and high in residence in urban area have high probability of graduation. As a result, the Deep Learning module developed rather than the decision tree was identified as a model for evaluating the graduation of students more efficiently.

Development Strategy of Smart Urban Flood Management System based on High-Resolution Hydrologic Radar (고정밀 수문레이더 기반 스마트 도시홍수 관리시스템 개발방안)

  • YU, Wan-Sik;HWANG, Eui-Ho;CHAE, Hyo-Sok;KIM, Dae-Sun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.191-201
    • /
    • 2018
  • Recently, the frequency of heavy rainfall is increasing due to the effects of climate change, and heavy rainfall in urban areas has an unexpected and local characteristic. Floods caused by localized heavy rains in urban areas occur rapidly and frequently, so that life and property damage is also increasing. It is crucial how fast and precise observations can be made on successful flood management in urban areas. Local heavy rainfall is predominant in low-level storms, and the present large-scale radars are vulnerable to low-level rainfall detection and observations. Therefore, it is necessary to introduce a new urban flood forecasting system to minimize urban flood damage by upgrading the urban flood response system and improving observation and forecasting accuracy by quickly observing and predicting the local storm in urban areas. Currently, the WHAP (Water Hazard Information Platform) Project is promoting the goal of securing new concept water disaster response technology by linking high resolution hydrological information with rainfall prediction and urban flood model. In the WHAP Project, local rainfall detection and prediction, urban flood prediction and operation technology are being developed based on high-resolution small radar for observing the local rainfall. This study is expected to provide more accurate and detailed urban flood warning system by enabling high-resolution observation of urban areas.

Management Strategies of Local Cold Air in Jeongmaek for utilizing urban Ventilation Corridor - A Case Study of the Nak-nam Jeongmaek - (바람길 활용을 위한 정맥의 찬공기 관리 방안 - 낙남정맥을 사례로 -)

  • EUM, Jeong-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.154-167
    • /
    • 2019
  • As urban heat environment problems occur due to climate change, urban thermal environmental problems such as heat waves and tropical nights are becoming more serious in cities. In South Korea, forest areas favorable for generating cold air account for about 63 percent of the land area. Furthermore, the Jeongmaek, the axis of the main mountain ranges of Korea, is located close to the cities. Hence, the management of cold air is an effective way to improve the thermal environment of Korean cities. We selected the Nak-nam Jeongmaek located in the southern part of Korean Peninsular as well as two cities (Jinju-si and Sancheong-gun) located at the Jeongmaek to analyze its cold air characteristics and suggest management strategies of cold air. We used KALM (Kaltluftabflussmodell), a cold air simulation model developed in Germany and identified both the cold air flow and the height of cold air layer generated during 6 hours at night. As a result, the cold air flow generated in the Jeongmaek became clear and the height of cold air layer increased with time. Based on the results, we proposed management plans to maintain and expand the cold air flow. For example, forest areas with active cold air generation were designated as 'cold air conservation areas', and areas requiring management for good cold air flow were as 'cold air management areas'. This study is expected to be useful for establishing systematic urban ventilation plan to improve thermal environment in Korea cities.