• Title/Summary/Keyword: climate mitigation

Search Result 376, Processing Time 0.023 seconds

Adsorption Characteristics of Aqueous Ammonium Using Rice hull-Derived Biochar (왕겨 바이오차의 암모늄태 질소(NH4-N) 흡착 특성)

  • Choi, Yong-Su;Shin, Joung-Du;Lee, Sun-Il;Kim, Sung-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.3
    • /
    • pp.155-160
    • /
    • 2015
  • BACKGROUND: Objective of this study was to investigate adsorption characteristics of $NH_4-N$ to biochar produced from rice hull in respective to mitigation of greenhouse gases. METHODS AND RESULTS: $NH_4-N$ concentration was analyzed by UV spectrophotometer. For adsorption experiment of $NH_4-N$ to biochar, input amount of biochar was varied from 0.4 to 10 g/L with 30 mg/L $NH_4-N$ solution. Its adsorption characteristic was investigated with application of Langmuir isotherm. Adsorption amount and removal rates of $NH_4-N$ were decreased at 53.9% and increased at 20.2% with 10 g/L compared to 0.4 g/L, respectively. The sorption of $NH_4-N$ to biochar produced from rice hull was fitted well by a Langmuir model. The largest adsorption amount of $NH_4-N$ ($q_m$) and binding strength constant (b) were calculated as 0.4980 mg/g, and 0.0249 L/mg, respectively. It was observed that dimensionless constant ($R_L$) was 0.58. CONCLUSION: It was indicated that biochar produced from rice hull is favorably absorbed $NH_4-N$, because this value lie within 0< $R_L$ <1.

A Study on the Low-carbon Urban Regeneration Planning Elements and System in Climate Change Era. (기후변화대응 탄소저감형 도시재생 계획 요소 및 체계에 관한 연구)

  • Choi, Joung-eun;Choi, Joon-Sung;Oh, Deog-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6345-6359
    • /
    • 2015
  • This study aims to clarify the concept of 'Low-carbon urban regeneration', to extract planning elements according to it, and to establish the planning system. In order to extract the elements, matrix analysis was conducted between planning elements of urban regeneration and Low-carbon cities, and the focus group interview(FGI) was used. Derived elements from this process were restructured for the new planning system. In addition, in-depth case analysis was performed to verify the suitability and effects of planning elements and system. The result showed that planning element of Low-carbon urban regeneration can be sorted in 37 elements in 5 categories. In-depth analysis indicated that established planning elements were importantly dealt in cases and played a significant role in urban regeneration and carbon reduction. Also, it showed that those elements had a significant relationship with adaptation and mitigation, the two responding strategies to the climate change. Elements highly contributing to urban regeneration were Urban Structure, Transportation, Policy while elements affecting carbon reduction were Transportation, Green & Blue space, Energy & Material field.

A Study of Estimation of Greenhouse Gas Emission and Reduction by Municipal Solid Waste (MSW) Management (D시 생활폐기물 관리 방법과 온실가스 배출량과 감축량 산정 연구)

  • Yun, Hyunmyeong;Chang, Yun;Jang, Yong-Chul
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.606-615
    • /
    • 2018
  • Over the past two decades, the options for solid waste management have been changing from land disposal to recycling, waste-to-energy, and incineration due to growing attention for resource and energy recovery. In addition, the reduction of greenhouse gas (GHG) emission has become an issue of concern in the waste sector because such gases often released into the atmosphere during the waste management processes (e.g., biodegradation in landfills and combustion by incineration) can contribute to climate change. In this study, the emission and reduction rates of GHGs by the municipal solid waste (MSW) management options in D city have been studied for the years 1996-2016. The emissions and reduction rates were calculated according to the Intergovernmental Panel on Climate Change guidelines and the EU Prognos method, respectively. A dramatic decrease in the waste landfilled was observed between 1996 and 2004, after which its amount has been relatively constant. Waste recycling and incineration have been increased over the decades, leading to a peak in the GHG emissions from landfills of approximately $63,323tCO_2\;eq/yr$ in 2005, while the lowest value of $35,962tCO_2\;eq/yr$ was observed in 2016. In 2016, the estimated emission rate of GHGs from incineration was $59,199tCO_2\;eq/yr$. The reduction rate by material recycling was the highest ($-164,487tCO_2\;eq/yr$) in 2016, followed by the rates by heat recovery with incineration ($-59,242tCO_2\;eq/yr$) and landfill gas recovery ($-23,922tCO_2\;eq/yr$). Moreover, the cumulative GHG reduction rate between 1996 and 2016 was $-3.46MtCO_2\;eq$, implying a very positive impact on future $CO_2$ reduction achieved by waste recycling as well as heat recovery of incineration and landfill gas recovery. This study clearly demonstrates that improved MSW management systems are positive for GHGs reduction and energy savings. These results could help the waste management decision-makers supporting the MSW recycling and energy recovery policies as well as the climate change mitigation efforts at local government level.

Greenhouse Gas Reduction from Paddy by Environmentally-Friendly Intermittent Irrigation: A Review (환경 친화적인 간단관개를 통한 논에서의 온실가스 저감)

  • Choi, Joongdae;Uphoff, Norman;Kim, Jonggun;Lee, Suin
    • Journal of Wetlands Research
    • /
    • v.21 no.1
    • /
    • pp.43-56
    • /
    • 2019
  • Irrigated and flooded rice paddy contributes to the greenhouse gas emissions (GHG) that affect climate. This in turn affects the supply and reliability of the water needed for rice production. This dynamic makes current rice production methods foreseeably less sustainable over time while having other undesirable effects. Intermittent irrigation by a means of the system of rice intensification (SRI) and alternate wetting and drying (AWD) methods was reviewed to reduce global warming potential (GWP) from 29% to 90% depending on site-specific characteristics from flooded rice paddy and analyzed to be a promising option for enhancing the productivity of water as well, an increasingly constraining resource. Additional benefits associated with the SRI/AWD can be less arsenic in the grain and less degradation of water quality in the run-off from rice paddies. Adoption and expansion of intermittent irrigation of SRI/AWD may require costly public and private investments in irrigation infrastructure that can precisely make irrigation control, and the involvement and upgrading of water management agencies and farmer organizations to enhance management capabilities. Private and public collaboration as a means of earning carbon credit under the clean-development mechanism (CDM) with SRI/AWD for industries to meet as a part of their GHG emission quota as well as a social contribution and publicity program could contribute to adopt intermittent irrigation and rural investment and development. Also, inclusion of SRI and AWD in programs designed under CDM and/or in official development assistance (ODA) projects could contribute to climate-change mitigation and help to achieve UN sustainable development goals (SDGs).

Behavior Changes of Earthworm from Soils Amended with Biochar - Avoidance and Productivity - (바이오차르 토양 투입에 따른 지렁이의 행동변화 연구 - 회피 및 생산성 변화 -)

  • Kim, You Jin;Yang, Seung Hoon;Kim, Seo Yeon;Yoon, Hong Seok;Yoo, Ga Young
    • Journal of Climate Change Research
    • /
    • v.5 no.4
    • /
    • pp.277-284
    • /
    • 2014
  • Biochar application to soil is widely known to have effects of climate change mitigation and soil quality improvement. However, effects of biochar on soil ecosystem are not always positive and some biochars are reported to contain toxic materials which might influence soil ecosystem. In this context, this study aims to investigate behavioral changes of earthworms(Eisenia fetida, Eisenia andrei) in response to different application rates of biochar to artificial soil. Treatment included two types of biochars made from rice husk (RH_Char) and wastewater sludge (SL_Char) with 1% and 10% application rates, respectively. Avoidance test revealed that earthworms did not avoid SL_Char treatments at 1% and 10%, while they rather moved to the RH_Char treatments probably due to higher labile carbon content(Hot water extractable carbon) of the RH_Char. The HWC content of RH_Char was 4 times higher than that of the SL_Char. Results of reproduction test showed that the survival rates, number of juveniles and number of cocoons were not influenced by biochar application except for the treatment of SL_Char at 10% rate. In the SL_Char 10% treatment, fatality was approximately 3.3 times as high as the control and the number of cocoons was 1.3 times higher in the same treatment than the control, indicating that earthworms were under environmental stress. The possible explanation for the stress condition was related to higher Cd, Ni, Cr, and As contents in the SL_Char. Overall results imply that biochar application at low rate might not change earthworms' behavior for the short term, while the reproduction behavior might be negatively influenced under the high application rate.

A Study on the GHG Reduction Newest Technology and Reduction Effect in Power Generation·Energy Sector (발전 에너지 업종의 온실가스 감축 신기술 조사 및 감축효과 분석)

  • Kim, Joo-Cheong;Shim, So-Jung
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.349-358
    • /
    • 2013
  • In this study, the newest technology available to reduce GHG emissions, which can be applicable in energy industries of the future that has large reduction obligations by energy target management and large intensity of GHG emissions, has been investigated by searching the technical characteristics of each technology. The newest technology to reduce GHG emissions in the field of power generation and energy can be mainly classified into the improvement of efficiency, CCS, and gas combined-cycle technology. In order to improve the reliability of the GHG emission factor obtained from the investigation process, it has been compared to the technology-specific GHG emission factor derived from the estimated amount of emissions. Then the GHG abatement measures, using the derived estimation of factor, by using the newest technology to reduce GHG emissions have been predicted. As a result, the GHG reduction rate by technology of CCS development has been expected to be the largest more than 30%, and the abatement rate by technology of coal gasified fuel cell and pressurized fluidized-bed thermal power generation has been showed more than 20%. If the effective introduction of the newest technology and the study of its characteristics is continued, and properly applied for future GHG emissions, it can be prospected that the national GHG reduction targets can be achieved in cost-efficient way.

Complementary measures for Environmental Performance Evaluation Index of External Space of Green Standard for Energy and Environmental Design for Apartment Complex - Focused on the Respect of Response to Climate Change - (공동주택 녹색건축인증기준의 외부공간 환경성능 평가지표 보완방안 - 기후변화 대응 측면을 중심으로 -)

  • Ye, Tae-Gon;Kim, Kwang-Hyun;Kwon, Young-Sang
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.1
    • /
    • pp.3-14
    • /
    • 2018
  • An apartment complex is a building use with great potential to contribute to solving problems related to urban ecological environment and climate change. The first goal of this study is to grasp the current situation of application and limitations of the ecological area rate, which is a representative evaluation index used to evaluate the environmental performance of the external space of an apartment complex in Green Standard for Energy and Environmental Design (G-SEED). The second goal is to propose a prototype of the evaluation index for evaluating greenhouse gas (GHG) reduction performance in order to supplement the evaluation index for the environmental performance of the external space in terms of response to climate change. We analyzed 43 cases of apartment complexes certified according to G-SEED, which was enforced since July 1, 2010, and found application characteristics of each space type and the limitations of ecological area rate. We analyzed overseas green building certification systems such as LEED and BREEAM that derived implications for supplementing the limitations of ecological area rate, which is focused on the evaluation of soil and water circulation function, and set up a development direction of complementary measures. Through analysis of previous studies, relevant regulations and standards, and technical documents of the manufacturer, the heat island mitigation performance of the pavement and roof surfaces of the apartment complex and the carbon uptake performance of the trees in the apartment complex was selected as parameters to yield the GHG reduction performance of the external space of the apartment complex. Finally, a quantitative evaluation method for each parameter and a prototype of the evaluation index for the GHG reduction performance were proposed. As a result of applying the prototype to an apartment complex case, the possibility of adoption and applicability as an evaluation index of G-SEED were proved.

A Study of Burcucumber Biochars to Remediate Soil Pb Considering GWP (Global Warming Potential) (GWP (Global Warming Potential)를 고려한 가시박 바이오차르의 토양 납 제거 효과 분석)

  • Kim, You Jin;Park, Han;Kim, Min-Ho;Seo, Sung Hee;Ok, Yong Sik;Yoo, Gayoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.7
    • /
    • pp.432-440
    • /
    • 2015
  • Biochar, a by-product from pyrolysis of biomass, is a promising option to mitigate climate change by increasing soil carbon sequestration. This material is also considered to have potential to remediate a soil with heavy metal pollution by increasing the soil's adsorptive capacity. This study conducted the assessment of two biochars considering the climate change mitigation potential and heavy metal removal capacity at the same time. Two kinds of biochars (BC_Ch, TW_Ch) were prepared by pyrolyzing the biomass of burcucumber (BC_Bm) and tea waste (TW_Bm). The soils polluted with Pb were mixed with biochars or biomass and incubated for 60 d. During the incubation, $CO_2$, $CH_4$, and $N_2O$ were regularly measured and the soil before and after incubation was analyzed for chemical and biological parameters including the acetate extractable Pb. The results showed that only the BC_Ch treatment significantly reduced the amount of Pb after 60 d incubation. During the incubation, the $CO_2$ and $N_2O$ emissions from the BC_Ch and TW_Ch were decreased by 24% and 34% compared to the BC_Bm and TW_Bm, respectively. The $CH_4$ emissions were not significantly affected by biochar treatments. We calculated the GWP considering the production of amendment materials, application to the soils, removal of Pb, and soil carbon storage. The BC_Ch treatment had the most negative value because it had the higher Pb adsorption and soil carbon sequestration. Our results imply that if we apply biochar made from burcucumber, we could expect the pollution reduction and climate change mitigation at the same time.

An Analysis of Hydraulic Effect due to the Outflow of Paldang Dam at Hangang Parks (팔당댐 방류량에 따른 한강 시민공원의 수리학적 영향 분석)

  • Lee, Jae-Joon;Kwak, Chang-Jae;Lee, Sang-Won
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.101-111
    • /
    • 2008
  • Hangang Parks have been played an important role as the source of various Civilian activities by providing a natural space near Han River ever since it was developed. Due to the local-heavy rain caused by recent climate change, the Hangang Parks tends to be easily overflowed. Evacuation of the park in emergency and its controlled system should be made for the sake of Civilian's safety. In this study, various basic data and several parameters were analyzed to simulate the hydraulic effect of Hangang Parks based on the outflow in $P1/4{\div}1/4^3$ Dam. Rising effects of flood water level were investigated through the one-dimensional and twodimensional numerical hydraulic models. Relationships of water level and travel time of flood between key station and centeral part of each park were also identified. It can be used to forecast the future flood water level of each individual park in Hangang Parks. Obtained results can be used to establish the rational plan of usage, management, citizen's safety, and emergency action plan of the Hangang Parks as the flood is occurred from the outflow of Paldang dam.

Optimization of Multi-reservoir Operation considering Water Demand Uncertainty in the Han River Basin (수요의 불확실성을 고려한 한강수계 댐 연계 운영 최적화)

  • Chung, Gun-Hui;Ryu, Gwan-Hyeong;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.89-102
    • /
    • 2010
  • Future uncertainty on water demand caused by future climate condition and water consumption leads a difficulty to determine the reservoir operation rule for supplying sufficient water to users. It is, thus, important to operate reservoirs not only for distributing enough water to users using the limited water resources but also for preventing floods and drought under the unknown future condition. In this study, the reservoir storage is determined in the first stage when future condition is unknown, and then, water distribution to users and river stream is optimized using the available water resources from the first stage decision using 2-stage stochastic linear programming (2-SLP). The objective function is to minimize the difference between target and actual water storage in reservoirs and the water shortage in users and river stream. Hedging rule defined by a precaution against severe drought by restricting outflow when reservoir storage decreases below a target, is also applied in the reservoir operation rule for improving the model applicability to the real system. The developed model is applied in a system with five reservoirs in the Han River basin, Korea to optimize the multi-reservoir system under various future water demand scenarios. Three multi-purposed dams - Chungju, Hoengseong, and Soyanggang - are considered in the model. Gwangdong and Hwacheon dams are also considered in the system due to the large capacity of the reservoirs, but they are primarily for water supply and power generation, respectively. As a result, the water demand of users and river stream are satisfied in most cases. The reservoirs are operated successfully to store enough water during the wet season for preparing the coming drought and also for reducing downstream flood risk. The developed model can provide an effective guideline of multi-reservoir operation rules in the basin.