• Title/Summary/Keyword: climate change communication

Search Result 139, Processing Time 0.027 seconds

On the Linkage Between Irrigation Facilities and Rice Production Under Drought Events (가뭄사상 및 농업수리시설물이 쌀 생산량에 미치는 영향에 대한 상관 분석)

  • Woo, Seung-Beom;Nam, Won-Ho;Jeon, Min-Gi;Yoon, Dong-Hyun;Kim, Taegon;Sung, Jae-Hoon;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.95-105
    • /
    • 2021
  • Drought is a disaster that causes prolonged and wide scale damage. Recently, the severity and frequency of drought occurrences, and drought damage have been increased significantly due to climate change. As a result, a quantitative study of drought factors is needed to better understand and prevent future droughts. In the case of agricultural drought, several existing studies examine the economic damage caused by droughts and their causes, but these studies are not well suited to estimating crop-oriented agricultural drought damage and the factors that absolutely affect agricultural drought. This study determines which factors most affect agricultural drought. It examines meteorological factors and those related to agricultural water supplied by irrigation facilities. Rice paddy production per unit area is lower than the average from the last two years where agricultural drought occurred. We compare the relative frequency of agricultural drought impacts with irrigation facilities, effective reservoir storage, the number of water supply facilities, and the meteorological drought index such as Standardized Precipitation Index (SPI). To identify factors that affect agricultural drought, we correlate rice paddy production anomalies with irrigation water supply for the past two years. There was a high positive correlation between rice paddy production and irrigation water usage, and there was a low or moderate negative correlation between rice paddy production anomalies compared to the average of the past two years and SPI. As a result, agricultural water supply by irrigation facilities was judged to be more influential than meteorological factors in rice paddy production. This study is expected to help local governments establish policies related to agricultural drought response.

Analysis and Study of Safety Technical Standards in Domestic Photovoltaic Field (국내 태양광분야 안전성 기술기준 분석 및 연구)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.207-212
    • /
    • 2018
  • The increase in the size and the uptake of PV systems is leading to significant increase in the penetration of PV into local electricity grids. The increased penetration of PV is impacting on grid operation and in particular the voltage within the local grid can be significantly influenced by the various PV systems. The current global situation of environmental pollution, climate change and energy demand urgently requires dramatic political, economic and technical decisions in order to avoid a potential collapse of environmental and social systems. Around the world, electricity remains the vital component of national and international development. The implementation of renewable energy resources can provide solutions to these challenges by stimulating the early implementation of economically viable sustainable energy technologies.

Design and Implementation of Prototype model of Vehicle speed automatic variable control System (차량속도 자동화 가변 시스템의 프로트 타입 모델 설계 및 구현)

  • Choi, Sung-Jai
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.47-54
    • /
    • 2019
  • In the worldwide, The issue comes up which is the danger of car accidents from climate-change effects. We are considering about various types of speed limit signs for setting restricts to high-speed vehicles. South Korea has 4 seasons in the land. At Summer or Winter seasons have heavy rains and fogs or snow, In these seasons need to enforce speed limit laws or methods to prevent car collision. But South korea is using stationary speed limiters that is not enough to proof against rear-end car accidents in these climates. In this paper shows the necessity of independent LED speed limits display to reduce car accidents. And explaining the prototype model which is a combination of rain sensor and wiper systems. This model is independently changed the speed limits to 50%, 80%, 100% of standards by raindrops and snowflake. Also it is freely setting speed limits on each places anywhere it settled in. Visual effects of the model as being speed-down of vehicles helps to prevent rear-ending car accidents and traffic beforehand.

An Enhanced Cloud Cover Reading Algorithm Against Aerosol (연무에 강한 구름 판독 알고리즘)

  • Yun, Han-Kyung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2019
  • Clouds in the atmosphere are important variables that affect the temperature change by reflecting the radiant energy of the earth surface as well as changing the amount of sunshine by reflecting the sun's radiation energy. Especially, the amount of sunshine on the surface is very important It is essential information. Therefore, eye-observations of the sky on the surface of the earth have been enhanced by satellite photographs or relatively narrowed observation equipments. Therefore, cloud automatic observing systems have been developed in order to replace the human observers, but depending on the seasons, the reliability of observations is not high enough to be applied in the field due to pollutants or fog in the atmosphere. Therefore, we have developed a cloud observation algorithm that is robust against smog and fog. It is based on the calculation of the degree of aerosol from the all-sky image, and is added to the developed cloud reader to develop season- and climate-insensitive algorithms to improve reliability. The result compared to existing cloud readers and the result of cloud cover is improved.

Comparative Analysis of Solar Power Generation Prediction AI Model DNN-RNN (태양광 발전량 예측 인공지능 DNN-RNN 모델 비교분석)

  • Hong, Jeong-Jo;Oh, Yong-Sun
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.3
    • /
    • pp.55-61
    • /
    • 2022
  • In order to reduce greenhouse gases, the main culprit of global warming, the United Nations signed the Climate Change Convention in 1992. Korea is also pursuing a policy to expand the supply of renewable energy to reduce greenhouse gas emissions. The expansion of renewable energy development using solar power led to the expansion of wind power and solar power generation. The expansion of renewable energy development, which is greatly affected by weather conditions, is creating difficulties in managing the supply and demand of the power system. To solve this problem, the power brokerage market was introduced. Therefore, in order to participate in the power brokerage market, it is necessary to predict the amount of power generation. In this paper, the prediction system was used to analyze the Yonchuk solar power plant. As a result of applying solar insolation from on-site (Model 1) and the Korea Meteorological Administration (Model 2), it was confirmed that accuracy of Model 2 was 3% higher. As a result of comparative analysis of the DNN and RNN models, it was confirmed that the prediction accuracy of the DNN model improved by 1.72%.

A Study on The Network Design of Smart Village to Provide Wired and Wireless Convergence Services on IoT (IoT기반의 유무선 융복합 서비스 제공을 위한 스마트빌리지의 네트워크 구성방안에 관한 연구)

  • Kim, Yun-ha;Jeong, Jae-woong;Kim, Young-sung;Choi, Hyun-ju
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.296-299
    • /
    • 2022
  • The rapid urban expansion and the increase in natural disasters due to the increase of population after industrialization and climate change are causing numerous urban management problems. The IP based hyper-connectivity caused by the initiation of the 4th industrial revolution enables a variety of technologies and services that produce vast amounts of data and solve urban management problems based on this. Especially, the quality of life is improved by providing the necessary information for life that are produced through a sensor network on wired and wireless communication. In this study, we intend to propose the method of optimal communcation network composition for innovative and futuristic city management technology through the case of K-water Smart Village Communication System

  • PDF

Based on MQTT and Node-RED Implementation of a Smart Farm System that stores MongoDB (MQTT와 Node-RED를 기반한 MongoDB로 저장 하는 스마트 팜 시스템 구현)

  • Hong-Jin Park
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.256-264
    • /
    • 2023
  • Smart farm technology using IoT is one of the technologies that can increase productivity and improve the quality of agricultural products in agriculture, which is facing difficulties due to the decline in rural population, lack of rural manpower due to aging, and increase in diseases and pests due to climate change. . Smart farms using existing IoT simply monitor farms, implement smart plant growers, and have automatic greenhouse opening and closing systems. This paper implements a smart farm system based on MQTT, an industry standard protocol for the Internet of Things, and Node-RED, a representative development middleware for the Internet of Things. First, data is extracted from Arduino sensors, and data is collected and transmitted from IoT devices using the MQTT protocol. Then, Node-RED is used to process MQTT messages and store the sensing data in real time in MongoDB, a representative NoSQL, to store the data. Through this smart farm system, farm managers can use a computer or mobile phone to check sensing information on the smart farm in real time, anytime, anywhere, without restrictions on time and space.

Constructing an Internet of things wetland monitoring device and a real-time wetland monitoring system

  • Chaewon Kang;Kyungik Gil
    • Membrane and Water Treatment
    • /
    • v.14 no.4
    • /
    • pp.155-162
    • /
    • 2023
  • Global climate change and urbanization have various demerits, such as water pollution, flood damage, and deterioration of water circulation. Thus, attention is drawn to Nature-based Solution (NbS) that solve environmental problems in ways that imitate nature. Among the NbS, urban wetlands are facilities that perform functions, such as removing pollutants from a city, improving water circulation, and providing ecological habitats, by strengthening original natural wetland pillars. Frequent monitoring and maintenance are essential for urban wetlands to maintain their performance; therefore, there is a need to apply the Internet of Things (IoT) technology to wetland monitoring. Therefore, in this study, we attempted to develop a real-time wetland monitoring device and interface. Temperature, water temperature, humidity, soil humidity, PM1, PM2.5, and PM10 were measured, and the measurements were taken at 10-minute intervals for three days in both indoor and wetland. Sensors suitable for conditions that needed to be measured and an Arduino MEGA 2560 were connected to enable sensing, and communication modules were connected to transmit data to real-time databases. The transmitted data were displayed on a developed web page. The data measured to verify the monitoring device were compared with data from the Korea meteorological administration and the Korea environment corporation, and the output and upward or downward trend were similar. Moreover, findings from a related patent search indicated that there are a minimal number of instances where information and communication technology (ICT) has been applied in wetland contexts. Hence, it is essential to consider further research, development, and implementation of ICT to address this gap. The results of this study could be the basis for time-series data analysis research using automation, machine learning, or deep learning in urban wetland maintenance.

Proposal for Research Model of Agricultural and Fishery Farm Tower (수직형 농축수산 팜의 연구 모델 제안)

  • Young-Su Lee;Seung-Jung Shin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.69-76
    • /
    • 2024
  • This dissertation developed a five-story vertical livestock and fisheries farm (palm tower) model for sustainable food production in cities. It proposes to integrate marine farms, livestock raising, and pesticide-free automated crop farms to efficiently use resources and minimize environmental impact. Based on circular economy principles, the model can recycle the output of each part into resources from the other, increasing the efficiency of the system, utilizing idle space in the city, and promoting job creation and community participation. It can also contribute to reducing the carbon footprint of food production and improving food safety. In addition, the study explores how advanced agricultural technologies can be integrated into urban structures to address global food security challenges. This model presents potential solutions to the food crisis caused by climate change and population growth, and suggests a direction for the development of urban agriculture. Future research should address the technical and policy challenges for practical implementation.

Development of monitoring system to prevent inflow of marine life into the nuclear power plant (해양생물의 원전 취수구 유입 방지를 위한 모니터링 시스템 개발)

  • Tae-Jong KANG;Eun-Bi MIN;Joong-Ro SHIN;Doo-Jin HWANG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.3
    • /
    • pp.277-289
    • /
    • 2024
  • Climate change has led to a significant increase in jellyfish populations globally, causing various problems. For power plants that use nearby seawater for cooling, the intrusion of jellyfish into intake systems can block the flow, leading to reduced output or even shutdowns. This issue is compounded by other small marine organisms like shrimp and salps, making it urgent to develop solutions to prevent their intrusion. This study addressed the problem using the BioSonics DT-X 120 kHz scientific fish finder to conduct preliminary tank experiments. We also deployed underwater acoustic and camera buoys around the intake of nuclear power plant, utilizing a bidirectional communication system between sea and land to collect data. Data collection took place from July 31, 2023 to August 1, 2023. While harmful organisms such as jellyfish and salps were not detected, we successfully gathered acoustic data on small fish measuring backscattering strength (SV). Analysis showed that fish schools were more prominent in the evening than during the day. The highest fish distribution was observed at 3:30 AM on July 31 with an SV of -44.8 dB while the lowest was at 12:30 PM on the same day with an SV of -63.4 dB. Additionally, a solar-powered system was used to enable real-time data acquisition from sea buoys with smooth communication between the land server and the offshore buoy located 1.8 km away. This research developed an acoustic-based monitoring system for detecting harmful organisms around the intake and provided foundational data for preventing marine organism intrusion and planning effective measures.