• Title/Summary/Keyword: climate applications

Search Result 218, Processing Time 0.032 seconds

Preliminary Study on Alluvial Soil Characteristics for Clogging Possibility in Groundwater Artificial Recharge Area (인공함양 지역 클로깅 가능성 평가를 위한 충적층 토양 특성에 관한 예비 연구)

  • Hwang, Jeong;Choi, Myoung-Rak;Kim, Gyoo-Bum
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.1
    • /
    • pp.39-46
    • /
    • 2024
  • Artificial recharge systems have been employed to solve drought problems due to global climate change. Despite the increased usage, the applications of artificial recharge systems are limited by clogging problems, which reduce recharge rates. In this study, the soil texture and mineral characteristics of alluvial soil in a planned artificial recharge system area were investigated to evaluate the possibility of chemical clogging during the injection of stream water. The primary minerals contained in the clastic particles are quartz, K-feldspar, plagioclase, and biotite, and the secondary minerals filling the pore space are illite, kaolinite and Fe-oxide. The fact that carbonate and sulfate are observed as secondary minerals in the pore space suggests that chemical clogging has not occurred by the interaction between the groundwater and surface water in the study area. Thus, monitoring soil properties, e.g., the formation and growth of secondary minerals in the pore space, is required to investigate the possibility of chemical clogging in artificial recharge systems.

Insights into Enzyme Reactions with Redox Cofactors in Biological Conversion of CO2

  • Du-Kyeong Kang;Seung-Hwa Kim;Jung-Hoon Sohn;Bong Hyun Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1403-1411
    • /
    • 2023
  • Carbon dioxide (CO2) is the most abundant component of greenhouse gases (GHGs) and directly creates environmental issues such as global warming and climate change. Carbon capture and storage have been proposed mainly to solve the problem of increasing CO2 concentration in the atmosphere; however, more emphasis has recently been placed on its use. Among the many methods of using CO2, one of the key environmentally friendly technologies involves biologically converting CO2 into other organic substances such as biofuels, chemicals, and biomass via various metabolic pathways. Although an efficient biocatalyst for industrial applications has not yet been developed, biological CO2 conversion is the needed direction. To this end, this review briefly summarizes seven known natural CO2 fixation pathways according to carbon number and describes recent studies in which natural CO2 assimilation systems have been applied to heterogeneous in vivo and in vitro systems. In addition, studies on the production of methanol through the reduction of CO2 are introduced. The importance of redox cofactors, which are often overlooked in the CO2 assimilation reaction by enzymes, is presented; methods for their recycling are proposed. Although more research is needed, biological CO2 conversion will play an important role in reducing GHG emissions and producing useful substances in terms of resource cycling.

Pathos of Color Green Expressed in Korean War Films (전쟁영화에서 초록의 색채표현과 파토스)

  • Jong-Guk Kim
    • Journal of Information Technology Applications and Management
    • /
    • v.29 no.6
    • /
    • pp.123-134
    • /
    • 2022
  • War films are a general term for films that have battlefields as their main background. Although war films as a genre directly deal with combat situations, they also deal with characters or subjects related to war. War films promote patriotism and nationalism, but they also argue against war by highlighting the disastrous war. This study is based on the color theory that the meaning of film color is temporarily and infinitely generated according to the cultural differences, with Eisenstein's creative theory on film color and pathos. I wanted to clarify the pathos effect and the meaning of color green expressed in the Korean war films. In war films, colors are visualized in art forms such as symbols, similes and metaphors. In war films, color green symbolizes life. On the battlefield, the green of nature stands against the catastrophic situation. The green of ecology, which insists on the flow of life, evokes fear in ecological crises such as war, disaster and climate change. The dark green caused by a catastrophe like war warns of the destruction of life. The connotation of color is temporarily and infinitely expands according to the cultural differences. The dark green, which visualizes the battlefield of destruction, is a form and element of pathos that indicates changes in emotions such as sadness, pity, grief and despair. Pathos as an emotional appeal is a leap from the quality to the quality of the means of expression and refers to the departure from Dasein. The green color that dominates the visuals of war films is a symbol of life and functions as a pathos that makes emotional changes take a new leap. A qualitative leap through pathos means all changes that become new.

Remote Sensing Applications for Malaria Research : Emerging Agenda of Medical Geography (원격탐사 자료를 이용한 말라리아 연구 : 보건지리학적 과제와 전망)

  • Park, Sunyurp
    • Journal of the Korean association of regional geographers
    • /
    • v.18 no.4
    • /
    • pp.473-493
    • /
    • 2012
  • Malaria infection is sensitively influenced by regional meteorological conditions along with global climate change. Remote sensing techniques have become an important tool for extraction of climatic and environmental factors, including rainfall, temperature, surface water, soil moisture, and land use, which are directly linked to the habitat qualities of malaria mosquitoes. Improvement of sensor fidelity with higher spatial and spectral resolution, new multinational sensor development, and decreased data cost have nurtured diverse remote sensing applications in malaria research. In 1984, eradication of endemic malaria was declared in Korea, but reemergence of malaria was reported in mid-1990s. Considering constant changes in malaria cases since 2000, the epidemiological management of the disease needs careful monitoring. Geographically, northmost counties neighboring North Korea have been ranked high in the number of malaria cases. High infection rates in these areas drew special attention and led to a hypothesis that malaria dispersion in these border counties might be caused by north-origin, malaria-bearing adult mosquitoes. Habitat conditions of malaria mosquitoes are important parameters for prediction of the vector abundance. However, it should be realized that malaria infection and transmission is a complex mechanism, where non-environmental factors, including human behavior, demographic structure, landscape structure, and spatial relationships between human residence and the vector habitats, are also significant considerations in the framework of medical geography.

  • PDF

Variations of N2O by no tillage and conventional-tillage practices under the different kinds of fertilizer applications on the cultivation of soybean in Korea

  • Yoo, Jin;Oh, Eun-Ji;Kim, Suk-Jin;Woo, Sun-Hee;Chung, Keun-Yook
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.314-314
    • /
    • 2017
  • Anthropogenic activities have increased the concentrations of greenhouse gases, such as $CO_2$, $CH_4$, $N_2O$, HFCs, $SF_6$, and PFCs, in the atmosphere. Among others, $N_2O$ is well known as an important greenhouse gas accounting for 7.9% of the total greenhouse effect and the effect of its emission is 310 times greater than that of $CO_2$. Agricultural $N_2O$ emissions are now thought to contribute to about 60% of the global anthropogenic $N_2O$ emission, which have been increased primarily due to fertilizer N consumption and manure management. Therefore, the reduction of $N_2O$ emissions in agriculture is being required. This study was conducted to determine the variation of $N_2O$ emissions by no-tillage (NT) and conventional tillage (CT) practices in the cultivation of soybean from the sandy loam soils under the different kinds of fertilizer treatments June through September 2016 in Cheong-ju, Republic of Korea. An experimental plot, located in the temperate climate zone, was composed of two main plots that were NT and CT, and were divided into four plots, respectively, in accordance with types of fertilizers (chemical fertilizer, liquid pig manure, hairy vetch and non-fertilizer). Among all the treatments, $N_2O$ emission was the highest in August and the lowest in June. When $N_2O$ emissions were evaluated during the growing season (June to September) in all fertilizer treatments, NT with hairy vetch treatment emitted the highest $N_2O$ emission in August, whereas, $N_2O$ emissions was the lowest in NT with non-fertilizer treatment in June, respectively (p = 0.05). Based on the cumulative amount of $N_2O$ emissions during the growing season of soybean, NT had lower $N_2O$ emission than CT by 0.01 - 0.02 kg $N_2O$, although NT had higher $N_2O$ emission than CT by 0.03 kg $N_2O$ in only the chemical fertilizer treatments. As a result, it seems that the applications of liquid pig manure and hairy vetch rather than chemical fertilizer could decrease the $N_2O$ emission in NT, compared to CT.

  • PDF

Application of An Ecological Engineering Approach in Evaluating Protected Area at Local Scales (생태계 보호지역 평가에서 생태공학 도입과 활용)

  • Koo, Kyung Ah
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.2
    • /
    • pp.144-155
    • /
    • 2020
  • This research developed an approach to identify ecologically important areas at local scales and explained how the results of this approach could contribute to extend the protected areas in the Republic of Korea (ROK). While most developed countries have considered various biotic and abiotic factors, ecological processes, migration routes, habitat connectivity, ecosystem services, and etc. to determine the protected areas, ROK has considered a few factors focusing on biodiversity, landscape, and the habitats of endangered organisms. However, for sustainable management of our nature, we need comprehensive understanding of various ecosystem factors and interactions among them at local scales in designating protected areas. Forthis, we developed a conceptual model based on the ecological engineering approach and then explained how the results of this approach could contribute to extend the protected areas. In particular, we considered future land-use and climate change in determining the priority areas for novel protected areas. Our research suggested an effective methodology 1) to include various ecosystem factors and 2) to consider future environmental changes as well as current environmental conditions in finding the ecologically important areas and prioritizing these areas. However, our approach has limitations on the real-world applications due to the lack of fundamental information and data on our ecosystems. To improve the effectiveness of our approach in the real-world applications, we need various long-term ecological research results, environmental and ecological monitoring data, and both current and future spatial environmental data.

Patent Trend Analysis of Carbon Capture/Storage/Utilization Technology (이산화탄소 포집/저장/활용 기술 특허 동향 분석)

  • Bae, Junhee;Seo, Hangyeol;Ahn, Eunyoung;Lee, Jaewook
    • Economic and Environmental Geology
    • /
    • v.50 no.5
    • /
    • pp.389-400
    • /
    • 2017
  • In December 2015, 195 nations agreed to cut green house gas emissions in the Paris Climate Convention, and all over the world showed their willingness to participate in greenhouse gas mitigation. Accordingly, various technologies related to greenhouse gas reduction are being considered, among which carbon dioxide capture, storage, utilization (CCUS) technologies are attracting attention as an unique technology capable of directly removing greenhouse gases. However, CCUS technologies are still costly and have low efficiency. It is still more important to analyze the level of CCUS technology before commercialization and to understand trends and to predict future direction of technology. Therefore, this study analyzes the patent trends of CCUS technology and derives implications for future directions. As a result of country analysis, the United States had the highest number of applications, and sectoral analysis shows that 64% of total patents are from capture sector. Companies such as Alstom technology, Toshiba Corp, and Mitsubishi Heavy are focusing on capturing carbon dioxide. In Korea, government research institutes have focused on storage and utilization technologies. In addition, since the late 2000s, patent applications have increased rapidly, and many countries have been interested in the development of the technology and have made efforts to reduce greenhouse gas.

Evaluation of bias and uncertainty in snow depth reanalysis data over South Korea (한반도 적설심 재분석자료의 오차 및 불확실성 평가)

  • Jeon, Hyunho;Lee, Seulchan;Lee, Yangwon;Kim, Jinsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.9
    • /
    • pp.543-551
    • /
    • 2023
  • Snow is an essential climate factor that affects the climate system and surface energy balance, and it also has a crucial role in water balance by providing solid water stored during the winter for spring runoff and groundwater recharge. In this study, statistical analysis of Local Data Assimilation and Prediction System (LDAPS), Modern.-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), and ERA5-Land snow depth data were used to evaluate the applicability in South Korea. The statistical analysis between the Automated Synoptic Observing System (ASOS) ground observation data provided by the Korea Meteorological Administration (KMA) and the reanalysis data showed that LDAPS and ERA5-Land were highly correlated with a correlation coefficient of more than 0.69, but LDAPS showed a large error with an RMSE of 0.79 m. In the case of MERRA-2, the correlation coefficient was lower at 0.17 because the constant value was estimated continuously for some periods, which did not adequately simulate the increase and decrease trend between data. The statistical analysis of LDAPS and ASOS showed high and low performance in the nearby Gangwon Province, where the average snowfall is relatively high, and in the southern region, where the average snowfall is low, respectively. Finally, the error variance between the four independent snow depth data used in this study was calculated through triple collocation (TC), and a merged snow depth data was produced through weighting factors. The reanalyzed data showed the highest error variance in the order of LDAPS, MERRA-2, and ERA5-Land, and LDAPS was given a lower weighting factor due to its higher error variance. In addition, the spatial distribution of ERA5-Land snow depth data showed less variability, so the TC-merged snow depth data showed a similar spatial distribution to MERRA-2, which has a low spatial resolution. Considering the correlation, error, and uncertainty of the data, the ERA5-Land data is suitable for snow-related analysis in South Korea. In addition, it is expected that LDAPS data, which is highly correlated with other data but tends to be overestimated, can be actively utilized for high-resolution representation of regional and climatic diversity if appropriate corrections are performed.

Status of Agrometeorological Information and Dissemination Networks (농업기상 정보 및 배분 네트워크 현황)

  • Jagtap, Shrikant;Li, Chunqiang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.2
    • /
    • pp.71-84
    • /
    • 2004
  • There is a growing demand for agrometeorological information that end-users can use and not just interesting information. lo achieve this, each region/community needs to develop and provide localized climate and weather information for growers. Additionally, provide tools to help local users interpret climate forecasts issued by the National Weather Service in the country. Real time information should be provided for farmers, including some basic data. An ideal agrometeorological information system includes several components: an efficient data measuring and collection system; a modern telecommunication system; a standard data management processing and analysis system; and an advanced technological information dissemination system. While it is conventional wisdom that, Internet is and will play a major role in the delivery and dissemination of agrometeorological information, there are large gaps between the "information rich" and the "information poor" countries. Rural communities represent the "last mile of connectivity". For some time to come, TV broadcast, radio, phone, newspaper and fax will be used in many countries for communication. The differences in achieving this among countries arise from the human and financial resources available to implement this information and the methods of information dissemination. These differences must be considered in designing any information dissemination system. Experience shows that easy across to information more tailored to user needs would substantially increase use of climate information. Opportunities remain unexplored for applications of geographical information systems and remote sensing in agro meteorology.e sensing in agro meteorology.

Blue Carbon Resources in the East Sea of Korea and Their Values and Potential Applications (동해안 블루카본 자원의 가치와 활용방안)

  • Yoon, Ho-Sung;Do, Jeong-Mi;Jeon, Byung Hee;Yeo, Hee-Tae;Jang, Hyeong Seok;Yang, Hee Wook;Suh, Ho Seong;Hong, Ji Won
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.578-587
    • /
    • 2022
  • Korea, as the world's 7th largest emitter of greenhouse gases, has raised the national greenhouse gas reduction target as international regulations have been strengthened. As it is possible to utilize coastal and marine ecosystems as important nature-based solutions (NbS) for implementing climate change mitigation or adaptation plans, the blue carbon ecosystem is now receiving attention. Blue carbon refers to carbon that is deposited and stored for a long period after carbon dioxide (CO2) is absorbed as biomass by coastal ecosystems or oceanic ecosystems through photosynthesis. Currently, there are only three blue carbon ecosystems officially recognized by the Intergovernmental Panel on Climate Change (IPCC): mangroves, salt marshes, and seagrasses. However, the results of new research on the high CO2 sequestration and storage capacity of various new blue carbon sinks, such as seaweeds, microalgae, coral reefs, and non-vegetated tidal flats, have been continuously reported to the academic community recently. The possibility of IPCC international accreditation is gradually increasing through scientific verification related to calculations. In this review, the current status and potential value of seaweeds, seagrass fields, and non-vegetated tidal flats, which are sources of blue carbon on the east coast, are discussed. This paper confirms that seaweed resources are the most effective NbS in the East Sea of Korea. In addition, we would like to suggest the direction of research and development (R&D) and utilization so that new blue carbon sinks can obtain international IPCC certification in the near future.