• Title/Summary/Keyword: cleaved caspase-3-9

Search Result 91, Processing Time 0.032 seconds

4-(Tert-butyl)-2,6-bis(1-phenylethyl)phenol induces pro-apoptotic activity

  • Kim, Jun Ho;Lee, Yunmi;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.3
    • /
    • pp.253-259
    • /
    • 2016
  • Previously, we found that KTH-13 isolated from the butanol fraction of Cordyceps bassiana (Cb-BF) displayed anti-cancer activity. To improve its antiproliferative activity and production yield, we employed a total synthetic approach and derivatized KTH-13 to obtain chemical analogs. In this study, one KTH-13 derivative, 4-(tert-butyl)-2,6-bis(1-phenylethyl)phenol (KTH-13-t-Bu), was selected to test its anti-cancer activity. KTH-13-t-Bu diminished the proliferation of C6 glioma, MDA-MB-231, LoVo, and HCT-15 cells. KTH-13-t-Bu induced morphological changes in C6 glioma cells in a dose-dependent manner. KTH-13-t-Bu also increased the level of early apoptotic cells stained with annexin V-FITC. Furthermore, KTH-13-t-Bu increased the levels of cleaved caspase-3 and -9. In contrast, KTH-13-t-Bu upregulated the levels of pro- and cleaved forms of caspase-3, -8, and -9 and Bcl- 2. Phospho-STAT3, phospho-Src, and phospho-AKT levels were also diminished by KTH13-t-Bu treatment. Therefore, these results strongly suggest that KTH-13-t-Bu can be considered a novel anti-cancer drug displaying pro-apoptotic activity.

Oxymatrine Causes Hepatotoxicity by Promoting the Phosphorylation of JNK and Induction of Endoplasmic Reticulum Stress Mediated by ROS in LO2 Cells

  • Gu, Li-li;Shen, Zhe-lun;Li, Yang-Lei;Bao, Yi-Qi;Lu, Hong
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.401-412
    • /
    • 2018
  • Oxymatrine (OMT) often used in treatment for chronic hepatitis B virus infection in clinic. However, OMT-induced liver injury has been reported. In this study, we aim to investigate the possible mechanism of OMT-induced hepatotoxicity in human normal liver cells (L02). Exposed cells to OMT, the cell viability was decreased and apoptosis rate increased, the intracellular markers of oxidative stress were changed. Simultaneously, OMT altered apoptotic related proteins levels, including Bcl-2, Bax and pro-caspase-8/-9/-3. In addition, OMT enhanced the protein levels of endoplasmic reticulum (ER) stress makers (GRP78/Bip, CHOP, and cleaved-Caspase-4) and phosphorylation of c-Jun N-terminal kinase (p-JNK), as well as the mRNA levels of GRP78/Bip, CHOP, caspase-4, and ER stress sensors (IREI, ATF6, and PERK). Pre-treatment with Z-VAD-fmk, JNK inhibitor SP600125 and N-acetyl-l-cysteine (NAC), a ROS scavenger, partly improved the survival rates and restored OMT-induced cellular damage, and reduced caspase-3 cleavage. SP600125 or NAC reduced OMT-induced p-JNK and NAC significantly lowered caspase-4. Furthermore, 4-PBA, the ER stress inhibitor, weakened inhibitory effect of OMT on cells, on the contrary, TM worsen. 4-PBA also reduced the levels of p-JNK and cleaved-caspase-3 proteins. Therefore, OMT-induced injury in L02 cells was related to ROS mediated p-JNK and ER stress induction. Antioxidant, by inhibition of p-JNK or ER stress, may be a feasible method to alleviate OMT-induced liver injury.

Ziyuglycoside II Attenuates Tumorigenesis in Experimental Colitis-associated Colon Cancer (AOM/DSS로 유도된 마우스 대장암 모델에서의 Ziyuglycoside-II의 항염증효과)

  • Cheon, Hye-Jin;Kim, Jin-Kyung
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.941-948
    • /
    • 2019
  • Colorectal cancer is a major health problem in industrialized countries. Ziyuglycoside II ($3{\beta}-3-{\alpha}$-1- arabinopyranosyloxy-19-hydroxyurs-12-en-28-oicacid), a triterpenoid saponin isolated from the roots of Sanguisorba officinalis L., possesses antioxidant, antiangiogenic, and anticancer properties. However, the therapeutic function of ziyuglycoside II in colitis-associated colorectal carcinogenesis is undefined. In the present study, the effect of ziyuglycoside II on colitis-associated colon cancer induced in mice using azoxymethane (AOM)/dextran sulfate sodium (DSS) was explored. The AOM model recapitulates many features of human colon cancer, but it lacks an inflammatory component. DSS induces colitis and promotes AOM-induced colon cancer in mice. BALB/c mice were injected with AOM and administered 2% DSS in drinking water. The mice were given ziyuglycoside II (1 or 5 mg/kg) orally three times per week, and colonic tissue was collected at 64 days. Administration of ziyuglycoside II markedly diminished the formation of colonic tumors. Western blot and immunohistological analyses showed that ziyuglycoside II noticeably decreased nuclear factor kappa-B-positive cells and levels of inflammation-related proteins, such as inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-${\alpha}$, and interleukin-6 in colon tissue. It also prompted apoptosis. Ziyuglycoside II treatment augmented cleaved forms of caspase-3, caspase-7, and poly (ADP-ribose) polymerase in colonic tissues. In conclusion, ziyuglycoside II could defend against colitis-associated tumorigenesis in mice by inhibiting inflammation and inducing apoptosis. This shows a promising chemopreventive potential for its use in colitis-associated colon cancer.

7,8,4'-Trihydroxyisoflavone, a Metabolized Product of Daidzein, Attenuates 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells

  • Ko, Yong-Hyun;Kim, Seon-Kyung;Kwon, Seung-Hwan;Seo, Jee-Yeon;Lee, Bo-Ram;Kim, Young-Jung;Hur, Kwang-Hyun;Kim, Sun Yeou;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.363-372
    • /
    • 2019
  • Daidzein isolated from soybean (Glycine max) has been widely studied for its antioxidant and anti-inflammatory activities. However, the protective effects of 7,8,4'-trihydroxyisoflavone (THIF), a major metabolite of daidzein, on 6-hydroxydopamine (OHDA)-induced neurotoxicity are not well understood. In the current study, 7,8,4'-THIF significantly inhibited neuronal cell death and lactate dehydrogenase (LDH) release induced by 6-OHDA in SH-SY5Y cells, which were used as an in vitro model of Parkinson's disease (PD). Moreover, pretreatment with 7,8,4'-THIF significantly increased the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) and decreased malondialdehyde (MDA) activity in 6-OHDA-induced SH-SY5Y cells. In addition, 7,8,4'-THIF significantly recovered 6-OHDA-induced cleaved caspase-3, cleaved caspase-9, cleaved poly-ADP-ribose polymerase (PARP), increased Bax, and decreased Bcl-2 levels. Additionally, 7,8,4'-THIF significantly restored the expression levels of phosphorylated c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2 (ERK 1/2), phosphatidylinositol 3-kinases (PI3K)/Akt, and glycogen synthase kinase-3 beta ($GSK-3{\beta}$) in 6-OHDA-induced SH-SY5Y cells. Further, 7,8,4'-THIF significantly increased the reduced tyrosine hydroxylase (TH) level induced by 6-OHDA in SH-SY5Y cells. Collectively, these results suggest that 7,8,4'-THIF protects against 6-OHDA-induced neuronal cell death in cellular PD models. Also, these effects are mediated partly by inhibiting activation of the MAPK and PI3K/Akt/$GSK-3{\beta}$ pathways.

Induction of apoptosis in human pro myelocytic leukaemia HL-60 cells by manassatin B involves release of cytochrome c and activation of caspases

  • Seo , bo-Rim;Lee, kyung-Tae
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.316.2-316.2
    • /
    • 2002
  • Manassantin B classified into dineolignans have been isolated from Saururus chinensis Manassantin B was found to induce apoptosis in human promyelocytic leukaemia HL -60 cells with characteristic apoptotic features like increase of nucleosomalladder. apoptotic body ormation. flipping of membrane phosphatidylserine. Manassantin B induced FAS and FAS ligand expression, and activated caspase 8 which cleaved bid to tbid in cytosol. The release of cytochrome c to sytosol was accompanied with decrease of bcl-2 protein and incresase of tbid and bax protein in mitochondria. Released xytochrome c activated caspase 9 and-3. but these effects were completely attenuated by the treatment of broad caspses ingibitor. Z-VAD fmk. These results indicate that manassatin B induce apoptosis through upregulation of FAS. caspase family and mitochondria-related proteins.

  • PDF

The Significance of Caspase-Cleaved Cytokeratin 18 in Pleural Effusion

  • Lee, Keu Sung;Chung, Joo Yang;Jung, Yun Jung;Chung, Wou Young;Park, Joo Hun;Sheen, Seung Soo;Lee, Kyi Beom;Park, Kwang Joo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.76 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • Background: Apoptosis plays a role in the development of pleural effusion. Caspase-cleaved cytokeratin 18, a marker for epithelial cell apoptosis, was evaluated in pleural effusion. Methods: A total of 79 patients with pleural effusion were enrolled. The underlying causes were lung cancer (n=24), parapneumonic effusion (n=15), tuberculous effusion (n=28), and transudates (n=12). The levels of M30, an epitope of caspase-cleaved cytokeratin 18, were measured in blood and pleural fluids using enzyme-linked immunosorbent assay along with routine cellular and biochemical parameters. The expression of M30 was evaluated in the pleural tissues using immunohistochemistry for M30. Results: The M30 levels in pleural fluid were significantly higher in patients with tuberculosis ($2,632.1{\pm}1,467.3U/mL$) than in patients with lung cancer ($956.5{\pm}618.5U/mL$), parapneumonic effusion ($689.9{\pm}413.6U/mL$), and transudates ($273.6{\pm}144.5U/mL$; all p<0.01). The serum levels were not significantly different among the disease groups. Based on receiver operating characteristics analysis, the area under the curve of M30 for differentiating tuberculous pleural effusion from all other effusions was 0.93. In the immunohistochemical analysis of M30, all pathologic types of cancer cells showed moderate to high expression, and the epithelioid cells in granulomas showed high expression in tuberculous pleural tissues. Conclusion: Caspase-cleaved cytokeratin 18 was most prominently observed in tuberculous pleural effusion and showed utility as a clinical marker. The main source of M30 was found to be the epithelioid cells of granulomas in tuberculous pleural tissues.

Monitoring of Cleavage Preference for Caspase-3 Using Recombinant Protein Substrates

  • Park, Kyoung-Sook;Yi, So-Yeon;Kim, Un-Lyoung;Lee, Chang-Soo;Chung, Jin-Woong;Chung, Sang-J.;Kim, Moon-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.911-917
    • /
    • 2009
  • The apoptotic caspases have been classified in accordance with their substrate specificities, as the optimal tetrapeptide recognition motifs for a variety of caspases have been determined via positional scanning substrate combinatorial library technology. Here, we focused on two proteolytic recognition motifs, DEVD and IETD, owing to their extensive use in cell death assay. Although DEVE and IETD have been generally considered to be selective for caspase-3 and -8, respectively, the proteolytic cleavage of these substrates does not display absolute specificity for a particular caspase. Thus, we attempted to monitor the cleavage preference for caspase-3, particularly using the recombinant protein substrates. For this aim, the chimeric GST:DEVD:EGFP and GST:IETD:EGFP proteins were genetically constructed by linking GST and EGFP with the linkers harboring DEVD and IETD. To our best knowledge, this work constitutes the first application for the monitoring of cleavage preference employing the recombinant protein substrates that simultaneously allow for mass and fluorescence analyses. Consequently, GST:IETD:EGFP was cleaved partially in response to caspase-3, whereas GST:DEVD:EGFP was completely proteolyzed, indicating that GST:DEVD:EGFP is a better substrate than GST:IETD:EGFP for caspase-3. Collectively, using these chimeric protein substrates, we have successfully evaluated the feasibility of the recombinant protein substrate for applicability to the monitoring of cleavage preference for caspase-3.

Neuroprotective effects of urolithin A on H2O2-induced oxidative stress-mediated apoptosis in SK-N-MC cells

  • Kim, Kkot Byeol;Lee, Seonah;Kim, Jung Hee
    • Nutrition Research and Practice
    • /
    • v.14 no.1
    • /
    • pp.3-11
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Oxidative stress causes cell damage and death, which contribute to the pathogenesis of neurodegenerative diseases. Urolithin A (UA), a gut microbial-derived metabolite of ellagitannins and ellagic acid, has high bioavailability and various health benefits such as antioxidant and anti-inflammatory effects. However, it is unknown whether it has protective effects against oxidative stress-induced cell death. We investigated whether UA ameliorates H2O2-induced neuronal cell death. MATERIALS/METHODS: We induced oxidative damage with 300 μM H2O2 after UA pretreatment at concentrations of 1.25, 2.5, and 5 μM in SK-N-MC cells. Cytotoxicity and cell viability were determined using the CCK-8 assay. The formation of reactive oxygen species (ROS) was measured using a 2,7-dichlorofluorescein diacetate assay. Hoechst 33342 staining was used to characterize morphological changes in apoptotic cells. The expressions of apoptosis proteins were measured using Western blotting. RESULTS: UA significantly increased cell viability and decreased intracellular ROS production in a dose-dependent manner in SK-N-MC cells. It also decreased the Bax/Bcl-2 ratio and the expressions of cytochrome c, cleaved caspase-9, cleaved caspase-3, and cleaved PARP. In addition, it suppressed the phosphorylation of the p38 mitogen-activated protein kinase (MAPK) pathway. CONCLUSIONS: UA attenuates oxidative stress-induced apoptosis via inhibiting the mitochondrial-related apoptosis pathway and modulating the p38 MAPK pathway, suggesting that it may be an effective neuroprotective agent.

Inhibitory Effect of the Methanolic Extract of Symphyocladia latiuscula on the Growth of HT-29 Human Colon Cancer Cells (보라우무 메탄올추출물의 HT-29 대장암세포 증식 억제 효과)

  • Kim, Eun-Ji;Park, So-Young;Hong, Ji-Eun;Shin, Min-Jeong;Lim, Soon-Sung;Shin, Hyun-Kyung;YoonPark, Jung-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.4
    • /
    • pp.431-438
    • /
    • 2007
  • In the present study, twenty eight marine algae species were evaluated for their antiproliferative effect on HT-29 human colon cancer cells. Among these, the methanolic extract of Symphyocladia latiuscula (SL Ex) showed the highest inhibitory activity on HT-29 cell growth. In this study, we examined the mechanism by which SL Ex inhibited the HT-29 cell growth. Cells were cultured with various concentrations of $(0{\sim}20{\mu}g/mL)$ SL Ex. The SL Ex substantially decreased the viable cell numbers and induced apoptosis of HT-29 cells in a dose-dependent manner Western blot analyses of total cell lysates revealed that SL Ex increased the levels of cleaved caspase-8, -9, -7, and -3, and poly (ADP-ribose) polymerase in HT-29 cells. In addition, SL Ex increased truncated Bid levels but moderately decreased Bax levels at only $20{\mu}g/mL$. Furthermore, SL Ex did not affect Bcl-2 protein levels but increased the levels of Fas in HT-29 cells. The present results indicate that SL Ex inhibits cell growth via inducing apoptosis in human colon cancer cells. The mechanism of apoptosis induction by SL Ex involves caspase-8 activation leading to changes in mitochondrial events and subsequent activation of the caspase-7/caspase-3 cascade. Our finding may lead to the development of new therapeutic strategies for the treatment of colon cancer.

Gambogenic Acid Induction of Apoptosis in a Breast Cancer Cell Line

  • Zhou, Jing;Luo, Yan-Hong;Wang, Ji-Rong;Lu, Bin-Bin;Wang, Ke-Ming;Tian, Ye
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7601-7605
    • /
    • 2013
  • Background: Gambogenic acid is a major active compound of gamboge which exudes from the Garcinia hanburyi tree. Gambogenic acid anti-cancer activity in vitro has been reported in several studies, including an A549 nude mouse model. However, the mechanisms of action remain unclear. Methods: We used nude mouse models to detect the effect of gambogenic acid on breast tumors, analyzing expression of apoptosis-related proteins in vivo by Western blotting. Effects on cell proliferation, apoptosis and apoptosis-related proteins in MDA-MB-231 cells were detected by MTT, flow cytometry and Western blotting. Inhibitors of caspase-3,-8,-9 were also used to detect effects on caspase family members. Results: We found that gambogenic acid suppressed breast tumor growth in vivo, in association with increased expression of Fas and cleaved caspase-3,-8,-9 and bax, as well as decrease in the anti-apoptotic protein bcl-2. Gambogenic acid inhibited cell proliferation and induced cell apoptosis in a concentration-dependent manner. Conclusion: Our observations suggested that Gambogenic acid suppressed breast cancer MDA-MB-231 cell growth by mediating apoptosis through death receptor and mitochondrial pathways in vivo and in vitro.