• Title/Summary/Keyword: clearance length

Search Result 152, Processing Time 0.024 seconds

Kinematical Analysis of Men's Pole Vault Event (장대높이뛰기 경기의 운동학적 분석)

  • Lim, Kyu-Chan
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.15-26
    • /
    • 2003
  • This study was conducted to investigate the performance times, CM position and CM speed, pole chord length and pole chord angle, whole body angular momentum(X axis), and grip width in pole vault event according to the event and phase; touch down, pole plant, take-off, maximum pole bending pole straight, pole release, peak height, and foot contact, pole contact, free flight. The pole vaulting of four male elite vaulters including six trial were filmed using two video digital cameras at 60 Hz at 56th national athletic match, and data were collected through the DLT method of three dimensional cinematography. In general the better jumper is, the longer the performance time is. And the greater CM speed is, and the better his transformation ability of CM horizontal speed into vertical speed is. As he uses a longer pole, his grip is higher, and it is a enough for him to rock back his body, so that he pulls and pushes the pole well keeping his hips close to. An greater maximum angular momentum and early positioning of the hips parallel to the bar makes his body far side of the bar and his bar clearance easier. Specially our national jumper needs to have more powerful braking force during foot contact phase, and take his body on the pole after maximum pole bending, and pull and push the pole strongly keeping his hips close to. Also he needs to have stronger muscular strength in order to control the longer pole and use the pole of proper tension more efficiently.

Power Requirement Model for Combine Cylinders (보통 콤바인 급동의 소요동력 모델)

  • Kim, S.H.;Gregory, J.M.;Kang, W.S.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.2
    • /
    • pp.142-147
    • /
    • 1991
  • Because combine cylinders account for up to 80 percent of the power requirements to harvest grain, it is important to have a reliable method to predict and analyze power consumption. An equation was derived to meet the prediction needs. The equation contains the variables number of bars on the cylinder, concave clearance, concave length, thickness of the feed material, feed rate, and cylinder speed. Indirectly, cylinder diameter was also considered. The derived equation was verified to be a reliable function for three of the variables and the equation was judged to be a reliable power prediction equation.

  • PDF

Durability Improvement of Engine Bulkhead by Adjusting Design Parameters (설계인자변화에 따른 엔진 벌크헤드 내구성 향상)

  • Yang, Chull-Ho;Han, Moon-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.111-116
    • /
    • 2011
  • Three-dimensional finite element analyses have been performed to improve the durability of bulkhead. To keep pace with design changes and concentrate on regions of interest, SUBMODEL technique in ABAQUS was used for analysis. An analysis was conducted with following load cases: 1) Cap press-fit, 2) Bearing crush, 3) Bolt assembly, 4) Hot assembly, 5) Firing load, 6) Alternating firing load, 7) 2nd hot assembly. Fatigue analysis was done using commercial software FEMFAT and fatigue factors at the interested regions such as bolt tip area, counter bore, breathing hole, honing clearance were calculated and compared to aid design validation. Finite element modeling in the area of thread engagement used a simple constraint equations. Increasing bolt length, to a minimum of 39 mm above joint face gives a better fatigue resistance to the bulkhead. Breathing hole helps not only circulate the air in the crankcase but also fatigue resistance of bulkhead by relieving the stress at the critical locations.

A LOW COST STRAW AND FORAGE CHOPPER

  • Pasikatan, M.C.;Salazar, G.C.;Quick, G.R.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.686-695
    • /
    • 1993
  • A flywheel-type, inclined axis chopper for small-area rice and livestock farmers, has been developed at IRRI Agricultural Engineering, The prototype is belt-driven by a 2.6kW engine and uses four angled blades rotating below a fixed counteredge. Manual feeding is facilitated by a convenient spout presenting the crop to the inclined blade housing and also suction created by the rotating blades . The distance between the rotating blades and the bottom of the housing determines the length of chops, set here for 25 cm. The unit would cost $200 without the engine. Tests with napier grass, corn stalks , and rice straw showed satisfactory performance within the acceptable clearance, speed and moisture content ranges of the material presented. Highest capacities were 1186, 1148 and 744kg/hr for napier grass, corn stalks and rice straw, respectively. Corn stalks required the highest power demand at 2.3kW engine would be adequate as power source. The chopper performance was comparable to higher cost commercial chippers in terms of capacity and specific energy.

  • PDF

Detailed Heat Transfer Characteristics on Rotating Turbine Blade (회전하는 터빈 블레이드에서의 열전달 특성)

  • Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1074-1083
    • /
    • 2006
  • In the present study, the effect of blade rotation on blade heat transfer is investigated by comparing with the heat transfer results for the stationary blade. The experiments are conducted in a low speed annular cascade with a single stage turbine and the turbine stage is composed of sixteen guide vanes and blades. The chord length and the height of the tested blade are 150 mm and about 125 mm, respectively. The blade has a flat tip and the mean tip clearance is 2.5% of the blade chord. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. For the experiments, the inlet Reynolds number is $Re_c=1.5{\times}10^5$, which results in the blade rotation speed of 255.8 rpm. Blade rotation induces a relative motion between the blade and the shroud as well as a periodic variation of incoming flow. Therefore, different heat/mass transfer patterns are observed on the rotating blade, especially near the tip and on the tip. The relative motion reduces the tip leakage flow through the tip gap, which results in the reduction of the tip heat transfer. However, the effect of the tip leakage flow on the blade surface is increased because the tip leakage vortex is formed closer to the surface than the stationary case. The overall heat/mass transfer on the shroud is not affected much by the blade rotation.

Effect of Punch Design and Flow Stress on Frictional Calibration Curve in Boss and Rib Test (보스-리브 시험 시 마찰보정선도에 대한 펀치형상 및 유동응력의 영향)

  • Yun, Y.W.;Kang, S.H.;Lee, Y.S.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.8
    • /
    • pp.640-645
    • /
    • 2009
  • Recently, boss and rib test based on backward extrusion process was proposed to quantitatively evaluate the interfacial friction condition in bulk forming process. In this test, the tube-shaped punch with hole pressurizes the workpiece so that the boss and rib are formed along the hole and outer surface of the punch. It was experimentally and numerically revealed that the height of boss is higher than that of the rib under the severe friction condition. This work is focused on the effect of the punch design and flow stress on deformation pattern in boss and rib test. From the boss and rib test simulations, it was found that there is slight variation in both the heights of boss and rib according to the length of punch land, nose radius, and face angle. However the hole diameter of the punch and the clearance between the punch and die have a significant influence on the calibration curves showing the heights of the boss and rib. In addition, the effect of flow stress on the calibration curves was investigated through FE simulations. It was found that there is no effect of strength coefficient of the workpiece on the calibration curves for estimation of friction condition. On the other hand, the strain-hardening exponent of the workpiece has a significant influence on the calibration curve.

Optimal Design of Nonlinear Squeeze Film Damper Using Hybrid Global Optimization Technique

  • Ahn Young-Kong;Kim Yong-Han;Yang Bo-Suk;Ahn Kyoung-Kwan;Morishita Shin
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1125-1138
    • /
    • 2006
  • The optimal design of the squeeze film damper (SFD) for rotor system has been studied in previous researches. However, these researches have not been considering jumping or nonlinear phenomena of a rotor system with SFD. This paper represents an optimization technique for linear and nonlinear response of a simple rotor system with SFDs by using a hybrid GA-SA algorithm which combined enhanced genetic algorithm (GA) with simulated annealing algorithm (SA). The damper design parameters are the radius, length and radial clearance of the damper. The objective function is to minimize the transmitted load between SFD and foundation at the operating and critical speeds of the rotor system with SFD which has linear and nonlinear unbalance responses. The numerical results show that the transmitted load of the SFD is greatly reduced in linear and nonlinear responses for the rotor system.

Effect of Boron Supplementation on Ca and Bone Metabolism in Rats during Growth (성장기 흰쥐에서 붕소의 보충이 체내 칼슘 및 골격 대사에 미치는 영향)

  • 정혜경;이현숙;김종연;김종여
    • Journal of Nutrition and Health
    • /
    • v.31 no.6
    • /
    • pp.1039-1048
    • /
    • 1998
  • It has been reported that boron may be beneficial for optimal calcium metabolism and, thus, optimal bone metabolism. Therefore, we designed a study to determine the effect of boron supplementation on Ca and bone metabolism in rats. The rats of 80-l40g body weight were given a control(0ug), 5$\mu\textrm{g}$, 10$\mu\textrm{g}$, 20$\mu\textrm{g}$, 40$\mu\textrm{g}$, or 80$\mu\textrm{g}$ boron supplement per Is diet for 4-weeks. The results are summarized as follows. There were no differences in total food intake and weight gain among the experimental groups. fecal Ca excretion, urinary Ca excretion, apparent Ca absorption, Ca retention, serum alkaline phosphatase activity, and urinary hydroxyproline were not affected by boron supplementation. There was no difference in serum creatinine. Whereas, urinary creatinine excretion was increased with increasing boron supplementation, and conse-quently creatinine clearance was increased with boron supplementation. No differences were found in length, weight, density, Ca content of femur and scapular. The findings suggest that boron supplementation was not effective in Ca and bone metabolism in growing rats fed normal Ca diet. (Korean J Nutrition 31(6) : 1039-1048, 1998)

  • PDF

A Study on the MR Cylinder with Built-in alves (밸브 내장형 MR 실린더에 관한 연구)

  • Song Joo-Young;Ahn Kyoung-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.130-136
    • /
    • 2005
  • A new MR cylinder with built-in valves using MR fluid (MR valve) is suggested and fabricated fur fluid control systems. The MR fluid is a newly developed functional fluid whose obvious viscosity is controlled by the applied magnetic field intensity. The MR cylinder is composed of cylinder with small clearance and piston with electromagnet. The differential pressure is controlled by the applied magnetic field intensity. It has the characteristics of simple, compact and reliable structure. The size of MR cylinder and piston has $\varphi30mm\times300mm$ and $\varphi28.5mm\times120mm$ in face size, respectively and 0.8mm in gap length. Through experiments, it was found that the differential pressure is controlled by the applied magnetic field intensity under little influence of the flow rate, which corresponds to a pressure control valve. The differential pressure of 0.47MPa was obtained with the input current of 1.5A. The rising time was 2.3s in step response of a manipulator using the MR cylinder. The effectiveness of the MR cylinder was also demonstrated through the position control.

Optimal Design for Steam-turbine Rotor-bearing System Using Combined Genetic Algorithm (조합 유전 알고리듬을 이용한 증기 터빈 회전체-베어링 시스템의 최적설계)

  • Kim, Young-Chan;Choi, Seong-Pil;Yang, Bo-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.5
    • /
    • pp.380-388
    • /
    • 2002
  • This paper describes the optimum design for low-pressure steam turbine rotor of 1,000 MW nuclear power plant by using a combined genetic algorithm, which uses both a genetic algorithm and a local concentrate search algorithm (e.g. simplex method). This algorithm is not only faster than the standard genetic algorithm but also supplies a more accurate solution. In addition, this algorithm can find the global and local optimum solutions. The objective is to minimize the resonance response (Q factor) and total weight of the shaft, and to separate the critical speeds as far from the operating speed as possible. These factors play very important roles in designing a rotor-bearing system under the dynamic behavior constraint. In the present work, the shaft diameter, the bearing length, and clearance are used as the design variables. The results show that the proposed algorithm can improve the Q factor and reduce the weight of the shaft and the 1st critical speed.