• 제목/요약/키워드: clearance angle

검색결과 187건 처리시간 0.026초

유한요소법을 이용한 머플러 튜브의 타공공정 성형해석

  • 황원식;김석대;한규택
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 춘계학술대회 논문요약집
    • /
    • pp.268-268
    • /
    • 2004
  • 머플러는 소음의 저감과 공기 정화의 특성으로 인해 자동차와 중장비에 적용되고 있다 최근에는 강화되고 있는 엄격한 환경규제를 만족하기 위해 그 설계와 제조에 있어 그 중요성이 높아지고 있으며, 머플러 튜브의 형태와 타공의 개수 및 배열은 다양한 형태로 연구가 이루어지고 있다. 이 중에서 튜브의 타공은 차량의 중량과 기능에 따라 다양한 형태를 가지며, 모델수의 증가와 출시기간의 단축으로 인해 튜브의 타공기술은 머플러 시장의 경쟁력을 좌우할 정도로 중요해 지고 있다.(중략)

  • PDF

왕복동형 압축기 피스톤-실린더계의 동적 거동 및 윤활특성 해석 (Analysis of the Dynamic Behavior and Lubrication Characteristics of the Piston-Cylinder System in Reciprocating Compressors)

  • 김태종
    • Tribology and Lubricants
    • /
    • 제18권4호
    • /
    • pp.291-298
    • /
    • 2002
  • In this study, a numerical analysis f3r the piston secondary dynamics and lubrication characteristics of small refrigeration reciprocating compressors is presented. In general, the length of cylinder in this class of compressors is shortened to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder wall is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the piston dynamics, the change in bearing length of the piston and all corresponding forces and moments are considered in order to determine the piston trajectory, velocity and acceleration at each step. A Newton-Raphson procedure was employed in solving the secondary dynamic equations of the piston. The developed computer program can be used to calculate the entire piston trajectory and the hydrodynamic forces and moments as functions of crank angle under compressor running conditions. The results explored the effects of the radial clearance, lubricant viscosity, and pin location on the stability of the piston, the oil leakage, and friction losses.

수치해석을 이용한 파력발전용 웰즈터빈의 유동특성에 관한 연구 (A Study on Flow Characteristics of a Wells Turbine for Wave Power Conversion Using Numerical Analysis)

  • 김정환;이형구;이연원;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권1호
    • /
    • pp.182-190
    • /
    • 2001
  • The aerodynamics of the Wells turbine has been studied using 3-d, unstructured mesh flow solver for the Reynolds-averaged Navier-Stokes equations. The basic feature of the Wells turbine is that even though the cyclic airflow produces oscillating axial forces on the airfoil blades, the tangential force on the rotor is always in the same direction. Geometry used to define 3-D numerical grid is based upon that of an experimental test rig. The 3-D Wells turbine model, consisting of approximate 220,000 cells is tested of four axial flow rates. In the calculations the angle of attack has been varied between 10˚ and 30˚ of blades, Representative results from each case are presented graphically andy analysed. It is concluded that this technique holds much promise for future development of Wells turbines.

  • PDF

초경팁 납접형 둥근톱의 공구 마멸 (Tool Wear of the Tungsten Carbide Tipped Circular Saw)

  • 이재우
    • 한국정밀공학회지
    • /
    • 제19권2호
    • /
    • pp.228-236
    • /
    • 2002
  • In this study, the carbon steels, SM20C were machined with the tungsten carbide tipped circular saw to clarify the cutting-off characteristics in terms of tool wear. The results show that an improved performance in view of both the tool wear and the cutting efficiency was obtained by using oil base cutting fluid at the cutting speed of 100m/min with the feed of 0.06mm/tooth. The rake angle of 10$^{\circ}$ , clearance angle of 8$^{\circ}$ , nose radius of R0.1mm, and end cutting edge champer of 0.1mm$\times$25$^{\circ}$ are believed as the best tool geometries. The tool wear decreases due to using the saw of the disk of STS5 and the tool material of P30.

실험계획법에 의한 러버실 금형가공을 위한 총형공구의 최적설계 (Optimal design of formed tool for die of rubber seals using design of experiments)

  • ;임표;이희관;양균의
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.694-697
    • /
    • 2005
  • The design of experiments are used for optimal design of formed tools to machine automobile bearing rubber seal die, which is classified into the high precision rubber mold. The clearance angle, rake angle and the length cutting edge are considered as the factors. The cutting force is selected to be a characteristic value and compared with the mean tool wear and life by repeated experiments. The design of the experiment is based on the repeated one-way factorial design, which finds the significance of the factors and the best level to predict the tool life by using ANOVA and regression.

  • PDF

Numerical study on aerodynamics of banked wing in ground effect

  • Jia, Qing;Yang, Wei;Yang, Zhigang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권2호
    • /
    • pp.209-217
    • /
    • 2016
  • Unlike conventional airplane, a WIG craft experiences righting moment and adverse yaw moment in banked turning in ground effect. Numerical simulations are carried out to study the aerodynamics of banked wing in ground effect. Configurations of rectangular wing and delta wing are considered, and performance of endplates and ailerons during banking are also studied. The study shows that righting moment increase nonlinearly with heeling angle, and endplates enhance the righting. The asymmetric aerodynamic distribution along span of wing with heeling angle introduces adverse yaw moment. Heeling in ground effect with small ground clearance increases the vertical aerodynamic force and makes WIG craft climb. Deflections of ailerons introduce lift decrease and a light pitching motion. Delta wing shows advantage in banked turning for smaller righting moment and adverse yaw moment during banking.

스피닝 공정을 이용한 다단 원형 컵 형상의 성형성에 관한 연구 (The Spinnability of Multi-step Cylindrical Cup in Spinning Process)

  • 박중언;한창수;최석우;김승수;나경환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.1016-1020
    • /
    • 2001
  • The spinning is a very effective manufacturing technology for short production runs in a variety of sizes and shapes, because it can form the cross-section or tubular parts various shapes. However extensive experimental and analytical research has not been carried out. In this study, and fundamental experiment was conducted to improve productivity with process parameter such as tool path, angle of roller holder(a), feed rate(v) and corner radius of forming roller(Rr). These factors were selected as variables in the experiment because they were most likely expected to have and effect on spring back. The clearance was controlled in order to achieve the precision product which is comparable to deep drawing one. And also thickness and diameter distribution of a multistage cup obtained by shear spinning process were observed and compared with those of a commercial product produced by conventional deep drawing.

  • PDF

압력 조절 장치를 갖는 풍동 지면판에 관한 수치해석적 연구 (NUMERICAL STUDY ON WIND TUNNEL GROUND PLATE WITH A PRESSURE CONTROL DEVICE)

  • 이민재;김철완
    • 한국전산유체공학회지
    • /
    • 제15권4호
    • /
    • pp.53-59
    • /
    • 2010
  • Preliminary design of a ground plate, a device installed close to the aircraft model for wind tunnel test to simulate the ground effect, was performed by a numerical simulation. A two-dimensional numerical study was performed initially to decide the optimal leading edge and flap configurations. Then, three-dimensional studies were conducted to decide the optimal flap deflection angle for pressure distribution reduction since the plate and the plate supporting system generate static pressure difference between the upper and lower flow regions. Three-dimensional simulation additionally studied the effect of the clearance between the plate and the wind tunnel side wall. For the efficiency of computation, half model was simulated and a symmetric boundary condition was applied on the center plane. Based on the preliminary design, a ground plate was designed, manufactured and tested at the Korea Aerospace Research Institute(KARI) wind tunnel. The measured pressure differences versus flap deflection angle agreed well with the predicted results.

나선홈을 가진 공기 동압베어링의 동역학적 거동 해석 (Analysis of Dynamic Behavior of Spiral Grooved Air-Dynamic Bearings)

  • 신용호;최우천
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.498-501
    • /
    • 2000
  • Air dynamic bearings are inherently unstable in dynamic behavior due to the varying angle of a force produced and the nonlinear characteristics of stiffness. In this study, such dynamic behavior is obtained and compared with experimental results. A body axis coordinate system is employed to avoid the change of a moment of inertia. FDM is used to calculate the pressure distribution on the bearing surface and then the force acting on the rotor was calculated by integrating the pressure distribution. By integrating accelerations which are calculated from the equations of motion using the 4th order Runge-Kutta method, the pose of the bearing at each time step is obtained.

  • PDF

사용차 구동축의 진동발생 메카니즘의 규명 (Vibration Excitation Mechanism of Commercial Vehicle Driveline)

  • Park, B.Y.
    • 한국정밀공학회지
    • /
    • 제12권12호
    • /
    • pp.109-119
    • /
    • 1995
  • A driveline incorporating universal joints when driving through an angle can excite various components in a vehicle with second order excitation of torsional and bending vibrations, being transmitted either audibly(noise), or physically(vibration). For a certain range of vehicle dpeed noises can be radiated from the cab wall, in which resonances occur by the excitations transmitted from the driveline as a vibration source. In this paper, the excitation mechanism of cab noises is studied especially for the vehicle speed range of 65 .approx. 75 km/h through the simulation for torsional vibrations of the driveline and for bending vibrations of the cab of an 11 Ton grade Cargo Truck, and verified additionally by vibration and noise measurements. As a result, it is found that the uncomfortable noises in the cab are caused mainly by the abrupt increase of the joint angle of driveline near the axle differential resulted from the excessive clearance alignment of the leaf spring gate.

  • PDF