• Title/Summary/Keyword: clear-to-send

Search Result 34, Processing Time 0.019 seconds

Coexistence Mechanism between IEEE 802.15.4 and IEEE 802.11 : ACROS (IEEE 802.15.4 와 IEEE 802.11의 공존 방법 : ACROS)

  • Shin, S.Y.;Lee, J.W.;Kwon, W.H.;Shin, Y.H.;Kim, Y.H.;Kim, J.J.;Kim, Yu-Shin
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.74-84
    • /
    • 2005
  • In this paper, a new coexistence mechanism between IEEE 802.15.4 and IEEE 802.11, ACROS (Active Channel Reservation for coexistence), is proposed. The key idea of ACROS is to reserve the channel for IEEE 802.15.4 transmission. During the reservation, IEEE 802.11 transmissions cannot be occurred. Request-to-send/clear-to-send mechanism of IEEE 802.11 is used to reserve channel. The proposed ACROS mechanism is implemented into PC based prototype. By the experiments, the $e{\pm}ciency$ of ACROS is proved.

  • PDF

OFDMA-Based Reliable Multicast MAC Protocol for Wireless Ad-Hoc Networks

  • Kim, Sung-Won;Kim, Byung-Seo
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.83-85
    • /
    • 2009
  • Compared with unicast, multicast over wireless ad-hoc networks do not support reliability due to their inability to exchange request-to-send/clear-to-send (RTS/CTS) and ACK packets with multiple recipients. Although several media access control (MAC) layer protocols have been proposed to provide reliable multicast, these introduce additional overhead, which degrades system performance. A novel MAC protocol for reliable wireless multicast is proposed in this paper. By adapting orthogonal frequency division multiple access characteristics in CTS and ACK packets, the protocol achieves reliability over wireless multicast with minimized overhead.

  • PDF

Adaptive Power Control based Efficient Localization Technique in Mobile Wireless Sensor Networks (모바일 무선 센서 네트워크에서 적응적 파워 조절 기반 효율적인 위치인식 기법)

  • Lee, Joa-Hyoung;Jung, In-Bum
    • The KIPS Transactions:PartC
    • /
    • v.16C no.6
    • /
    • pp.737-746
    • /
    • 2009
  • Given the increased interest in ubiquitous computing, wireless sensor network has been researched widely. The localization service which provides the location information of mobile user, is one of important service provided by sensor network. Many methods to obtain the location information of mobile user have been proposed. However, these methods were developed for only one mobile user so that it is hard to extend for multiple mobile users. If multiple mobile users start the localization process concurrently, there could be interference of beacon or ultrasound that each mobile user transmits. In the paper, we propose APL(Adaptive Power Control based Resource Allocation Technique for Efficient Localization Technique), the localization technique for multiple mobile nodes based on adaptive power control in mobile wireless sensor networks. In APL, collision of localization between sensor nodes is prevented by forcing the mobile node to get the permission of localization from anchor nodes. For this, we use RTS(Ready To Send) packet type for localization initiation by mobile node and CTS(Clear To Send) packet type for localization grant by anchor node. NTS(Not To Send) packet type is used to reject localization by anchor node for interference avoidance and STS(Start To Send) for synchronization between 모anchor nodes. At last, the power level of sensor node is controled adaptively to minimize the affected area. The experimental result shows that the number of interference between nodes are increased in proportion to the number of mobile nodes and APL provides efficient localization.

A Same-Priority Collision-Avoidance Algorithm Using RTS/CTS Frame in IEEE 802.11e EDCA under Network Congested Condition (IEEE 802.11e EDCA 네트워크 혼잡 환경에서 RTS/CTS 프레임을 이용한 동일 우선순위 충돌 회피 알고리즘)

  • Kwon, YongHo;Rhee, Byung Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.5
    • /
    • pp.425-432
    • /
    • 2014
  • The Enhanced Distributed Channel Access (EDCA) function of IEEE 802.11e standard defines contention window (CW) for different Access Category (AC) limits to support Quality-of-Service (QoS). However, it have been remained the problem that the collision probability of transmission is increasing in congested network. Several different solutions have been proposed but the collision occurs among same priority queue within the same station to compete the channel access. This paper presents an APCA (Advanced Priority Collision Avoidance) algorithm for EDCA that increases the throughput in saturated situation. The proposed algorithm use reserved field's bits of FC(Frame Control) using IEEE 802.11e standard's RTS/CTS (Request to Send / Clear to Send) mechanism to avoid data collision. The simulation results show that the proposed algorithm improves the performance of EDCA in packet loss. Using Jain's fairness index formula, we also prove that the proposed APCA algorithm achieves the better fairness than EDCA method under network congested condition.

CARA: Collision-Aware Rate Adaptation for IEEE 802.11 WLANs (CARA: IEEE 802.11 무선랜에서 충돌을 인지한 적응적 전송속도 조절기법)

  • Kim, Jong-Seok;Kim, Seong-Kwan;Choi, Sung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2A
    • /
    • pp.154-167
    • /
    • 2006
  • Today's IEEE 802.11 WLANs(Wireless LANs) provide multiple transmission rates so that different rates can be exploited in an adaptive manner depending on the underlying channel condition in order to maximize the system performance. Many rate adaptation schemes have been proposed so far while most(if not all) of the commercial devices implement a simple open-loop rate adaptation scheme(i.e., without feedback from the receiver), called ARF(Automatic Rate Fallback) due to its simplicity. A key problem with such open-loop rate adaptation schemes is that they do not consider the collision effect, and hence, malfunction severely when many transmission failures are due to collisions. In this paper, we propose a novel rate-adaptation scheme, called CARA(Collision-Aware Rate Adaptation). The key idea of CARA is that the transmitter station combines adaptively the Request-to-Send/Clear-to-Send(RTS/CTS) exchange with the Clear Channel Assessment(CCA) functionality to differentiate frame collisions from frame transmission failures cause by channel errors. Therefore, compared with other open-loop rate adaptation schemes, CATA is more likely to make the correct rate adaptation decisions. Through extensive simulation runs, we evaluate our proposed scheme to show that our scheme yields significantly higher throughput performance than the existing schemes in both static and time-varying fading channel environments.

A bidirectional full duplex medium access control protocol for underwater acoustic networks (수중 음향 네트워크를 위한 양방향 전이중 매체 접속 제어 프로토콜)

  • Kang, Sung Min;Hwang, Ho Young;Cho, Ho-Shin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.211-217
    • /
    • 2017
  • In this paper, we propose a bidirectional full duplex MAC (Medium Access Control) protocol for underwater acoustic networks. An underwater sensor node can set a back-off timer according to the priority of transmission. When the back-off timer expires, the underwater sensor node acquires a transmission opportunity. If a source node wants to send data to a destination node, it broadcasts RTS (Request-To-Send) including ID of the destination node to neighbor nodes. The destination node receiving RTS sends CTS (Clear-To-Send) to the source node to inform the bidirectional full duplex communication. After the source node receives CTS, the source node and the destination node can send the data to each other. In the underwater environment, the existing MAC protocol may take a lot of time for successful transmission of data due to long underwater propagation delay. On the other hand, the proposed bidirectional full duplex MAC protocol improves the throughput by shortening the time for successful transmission of data. In this paper, we analyze the throughput of the proposed bidirectional full duplex MAC protocol. In addition, we show that the proposed bidirectional full duplex MAC protocol has better performance in the presence of the long underwater propagation delay compared with existing MAC protocols for underwater environments.

MAC Protocol for Reliable Multicast over Multi-Hop Wireless Ad Hoc Networks

  • Kim, Sung-Won;Kim, Byung-Seo;Lee, In-Kyu
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.63-74
    • /
    • 2012
  • Multicast data communication is an efficient communication scheme, especially inmulti-hop ad hoc networks where the media access control (MAC) layer is based on one-hop broadcast from one source to multiple receivers. Compared to unicast, multicast over a wireless channel should be able to deal with varying channel conditions of multiple users and user mobility to provide good quality to all users. IEEE 802.11 does not support reliable multicast owing to its inability to exchange request-to-send/clear-to-send and acknowledgement packets with multiple recipients. Thus, several MAC layer protocols have been proposed to provide reliable multicast. However, additional overhead is introduced, as a result, which degrades the system performance. In this paper, we propose an efficient wireless multicast MAC protocol with small control overhead required for reliable multicast in multi-hop wireless ad hoc networks. We present analytical formulations of the system throughput and delay associated with the overhead.

Interferer Aware Multiple Access Protocol for Power-Line Communication Networks

  • Yoon, Sung-Guk
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.480-489
    • /
    • 2016
  • Hidden station problem can occur in power-line communication (PLC) networks. A simple solution to the problem has been proposed to use request-to-send (RTS)/clear-to-send (CTS) exchange, but this approach cannot solve the hidden station problem perfectly. This paper revisits the problem for PLC networks and designs a protocol to solve it. We first analyze the throughput performance degradation when the hidden station problem occurs in PLC networks. Then, we propose an interferer aware multiple access (IAMA) protocol to enhance throughput and fairness performances, which uses unique characteristics of PLC networks. Using the RTS/CTS exchange adaptively, the IAMA protocol protects receiving stations from being interfered with neighboring networks. Through extensive simulations, we show that our proposed protocol outperforms conventional random access protocols in terms of throughput and fairness.

CB-Sense: High Throughput Cross-technology Communication via IEEE 802.11 Idle Time (IEEE 802.11의 유휴 시간을 활용한 이기종 통신 기술의 처리량 향상 방법)

  • Lim, Jin Mook;Kim, Seungku
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.227-240
    • /
    • 2020
  • This paper proposes a novel CTC technology, CB-sense. The CB-sense guarantees a dedicated period for the CTC that results in low duty cycle of the receiver device. In addition, it send a lot of information explosively during the dedicated CTC period. Thus, it can achieve high throughput. The CB-sense uses Clear to Send (CTS) packets to transmit information bits to the heterogeneous wireless technologies. The CTS packets block the neighboring node transmissions, so it reduces co-channel interference. In experiment results, CB-sense represents 20 times more throughput than FreeBee and below 5% symbol error rate in the interference environment.

An Adaptive MAC Protocol for Wireless LANs

  • Jamali, Amin;Hemami, Seyed Mostafa Safavi;Berenjkoub, Mehdi;Saidi, Hossein
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.311-321
    • /
    • 2014
  • This paper focuses on contention-based medium access control (MAC) protocols used in wireless local area networks. We propose a novel MAC protocol called adaptive backoff tuning MAC (ABTMAC) based on IEEE 802.11 distributed coordination function (DCF). In our proposed MAC protocol, we utilize a fixed transmission attempt rate and each node dynamically adjusts its backoff window size considering the current network status. We determined the appropriate transmission attempt rate for both cases where the request-to-send/clear-to-send mechanism was and was not employed. Robustness against performance degradation caused by the difference between desired and actual values of the attempt rate parameter is considered when setting it. The performance of the protocol is evaluated analytically and through simulations. These results indicate that a wireless network utilizing ABTMAC performs better than one using IEEE 802.11 DCF.