• Title/Summary/Keyword: clean transfer

Search Result 158, Processing Time 0.024 seconds

Measurement of Mass Transfer Coefficients in a Benzene Adsorption Process (벤젠 흡착공정에서의 물질전달계수에 관한 연구)

  • Kwon, Jun-Ho;Choi, Moon-Kyu;Suh, Sung-Sup
    • Clean Technology
    • /
    • v.14 no.1
    • /
    • pp.47-52
    • /
    • 2008
  • Among various mass transfer models to express adsorption rates for any adsorption processes, the linear driving force (LDF) model is used most. The present investigation aims at finding whether this model may be applied to real adsorption process for separation and removal of benzene. Comparison of numerical simulation results calculated by the LDF model with experimental data allowed us to find the mass transfer coefficients that are most appropriate for a specific adsorption process. Various breakthrough curves were obtained from experiments performed at many different temperatures and pressures, which in turn produced suitable mass transfer coefficients. These dependencies of mass transfer coefficient on temperature and pressure were represented by an Arrhenius type- and a power law type empirical equation, respectively.

  • PDF

A Study on CO2 Removal by Chemical Absorption Using Structured Packing (규칙충전물을 적용한 화학흡수법에 의한 이산화탄소 제거에 관한 연구)

  • K?m, Jae-Hong;K?m, Hyoung-Ho;Kim, Jang-ho
    • Clean Technology
    • /
    • v.9 no.1
    • /
    • pp.43-48
    • /
    • 2003
  • As a result of study on factor affecting absorption efficiency using the structured packing, Mellapak N. 250Y for the chemical absorption of $CO_2$ that cause global warming due to development of industry, it is shown that Mellapak N. 250Y has lower pressure drop and superior efficiency of mass transfer than 25mm Pall ring. Also, in the absorption process, it produces high efficiency in the increase of load and concentration of absorption liquid and produces low efficiency in the increase of temperature. In the effect of overall mass transfer coefficient for 15% MEA on the temperature variation of absorbent, when absorbent temperature for 15% MEA varied as 25, 50, $80^{\circ}C$, overall mass transfer coefficients were shown as 0.83, 1.00, $0.90kmol/m^3-h-kPa$.

  • PDF

Study on The Application Case of Clean Technology of Leather Manufacture through technical transfer of chrome reduced tanning process (청정 피혁 생산을 위한 저크롬 탄닝 공정 기술 보급에 관한 사례 연구)

  • Kim, W.J.;Kim, H.H.;Lee, S.C.;Park, K.S.;Heo, J.S.
    • Clean Technology
    • /
    • v.10 no.1
    • /
    • pp.27-35
    • /
    • 2004
  • Domestic leather company is working hard to solve present environmental problem. Leather industry is realized by representative pollution industry. An advanced nation is trying to develop clean technology by collaborating research institute with the chemical company, and tannery. This research introduced information that is gained through technical transfer in leather processing. This project started to solve environmental problem of leather industry. Specially the environment and economic problem is caused from chrome which exists in the waste water or solid waste. Representative technologies, reduced chrome tanning, non-chrome tanning method, are being introduced through transfer. Also lightweight leather development advances the research which uses non-metal tanning agent.

  • PDF

Experimental Study on the Development of Nozzle-Type Diffusers for Submersible Aeration Process (수중폭기용 노즐형 산기관 개발에 관한 실험적 연구)

  • Rhim, Dong-Ryul;Cho, Nam-Hyo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.604-608
    • /
    • 2004
  • Experimental study was conducted to increase the oxygen transfer efficiency of air diffusers in clean water. By measuring the bubble size from the bubbly two-phase flow visualization with several air diffusers the size of air bubbles near the top surface of aeration tank seems to be independent on the diffuser types. Considering design parameters for the better breakup of larger bubbles around the air diffusers, advanced conceptual air diffusers using nozzle-type throat showing the higher oxygen transfer efficiencies were made.

  • PDF

The Estimation of heat transfer effect of Bunker C-oil Combustion by emulsified water addition (기술사 마당 - C-중유와 물의 에멀젼 연료화 장치의 효율예측)

  • Mun, Sung Su
    • Journal of the Korean Professional Engineers Association
    • /
    • v.45 no.6
    • /
    • pp.54-57
    • /
    • 2012
  • Usually the combustion of Bunker-C oil limited in a special area and achieved certain clean air effect. Water added oil combustion has the ability enhance the effect by the Overall Heat Transfer Coefficient. Every water adding step dedicated to reach an increase of the heat transfer effect. So, we can use this system and achieve reasonable energy consumption.

  • PDF

A Study on Heat Transfer Characteristics for Removal of Absorption Heat in Absorption Process of Ammonia-Water Bubble Mole (암모니아-물 기포분사형 흡수과정에서의 흡수열 제거를 위한 열전달 특성 연구)

  • Lee, Jae-Cheol;Lee, Ki-Bong;Chun, Byung-Hee;Lee, Chan-Ho;Ha, Jong-Joo;Kim, Sung-Hyun
    • Clean Technology
    • /
    • v.7 no.4
    • /
    • pp.273-280
    • /
    • 2001
  • An absorber is a major component in the absorption refrigeration systems and its performance greatly affects the overall system performance. In this study, experimental analyses on heat transfer characteristics for removal of absorption heat in ammonia-water bubble mode absorber were performed. Heat transfer coefficients were estimated as the variations of input gas flow rate, solution flow rate, temperature, concentration, absorber diameter and height, and input flow direction. The increase of gas and solution flow rate affects positively in heat transfer. However, the increase of solution temperature and concentration affects negatively. Moreover, under the same Reynolds Numbers, countercurrent flow is superior to cocurrent flow in heat transfer performance. In addition, from these experimental data, empirical correlations which can explain easily the characteristics of heat transfer are derived.

  • PDF

Study on the Standard Oxygen Transfer Efficiency Monitoring System in the Aeration Tank for Reuse and Discharge of Wastewater (하폐수의 재사용 및 방류를 위한 폭기조 내 표준산소전달 효율 모니터링 시스템에 관한 연구)

  • Kim, Hong-Seok;Kim, Yong-Beom;Ko, Kyung-Han;Kim, Sang-Woo;Shim, Hwan-bo
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.73-78
    • /
    • 2019
  • In this investigation, off-gas generated from the activated sludge in wastewater treatment plant was monitored. Through monitoring, the oxygen transfer efficiency in the aeration system and the reliability was evaluated by comparing to clean water. First, the dissolved oxygen, oxygen transfer coefficient, and standard oxygen transfer efficiency were measured based on clean water, and the values were 8.60 mg/L, 9.490/hr and 23.96%, respectively. The off-gas monitoring at the wastewater treatment plant indicated that the standard oxygen transfer efficiency was 22.81%. Little difference in oxygen transfer efficiency this data inferred that the performance was improved through diffuser installation in the field monitoring system.

Measurement of Condensation and Boiling Heat Transfer Coefficients of Non-flammable Mixed Refrigerant for Design of Cryogenic Cooling System for Semiconductor Etching Process (반도체 식각 공정용 초저온 냉각 시스템 설계를 위한 비가연성 혼합냉매 응축 및 비등 열전달 계수 측정)

  • Cheonkyu Lee;Jung-Gil Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.119-124
    • /
    • 2023
  • In this study, experimental approach of the measurement of condensation and evaporation heat transfer coefficients is discussed for mixed refrigerants using in the ultra low-temperature cooling system for semiconductor etching process. An experimental apparatus was described performing the condensation and evaporation heat transfer measurements for mixed refrigerants. The mixed refrigerant used in this study was composed of the optimal mixture determined in previous research, with a composition of Ar:R14:R23:R218 = 0.15:0.4:0.15:0.3. The experiments were conducted over a temperature range from -82℃ to 15℃ and at pressures ranging from 18.5 bar to 5 bar. The convection heat transfer coefficients of the mixed refrigerant were measured at flow rates corresponding to actual operating conditions. The condensation heat transfer coefficient ranged from approximately 0.7 to 0.9 kW/m2K, while the evaporation heat transfer coefficient ranged from 1.0 to 1.7 kW/m2K. The detailed discussion of the experimental methods, procedures, and results were described in this paper.

  • PDF

Numerical Analysis of Heat Transfer of Aligned Wing Type Pin-Fin Array of Air Cooling Module with Various Fin Shapes for Electronic Packaging Application (날개형 핀-휜의 기하학적 형상이 전자기기 모듈 냉각용 공기냉각기의 유동 및 열전달에 미치는 영향)

  • Kim, Soo-Youn;Heo, Kyeon;Shin, Seok-Won
    • Clean Technology
    • /
    • v.14 no.4
    • /
    • pp.265-270
    • /
    • 2008
  • In this study, the flow and heat transfer of the aligned pin-fin array of the air cooling module for electronic packaging application were numerically analyzed with various fin shapes. The geometric cross-sectional shapes of pin-fins considered in this study were ellipse, wing and circle. The fins had same cross-sectional area and height, but they had different surface areas. As the results, the surface area, the heat transfer coefficient, and the heat transfer performance of pin-fins greatly depended on their shapes. Of the three types of pin-fins, the wing type pin-fin with suitable shape produced the best heat transfer performance. This result implies that the cooling capacity of the pin-fin cooler can be significantly enhanced only by the change of fin shape without increasing air flow-rate or fin density.

  • PDF

Simple and Clean Transfer Method for Intrinsic Property of Graphene

  • Choe, Sun-Hyeong;Lee, Jae-Hyeon;;Kim, Byeong-Seong;Choe, Yun-Jeong;Hwang, Jong-Seung;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.659-659
    • /
    • 2013
  • Recently, graphene has been intensively studied due to the fascinating physical, chemical and electrical properties. It shows high carrier mobility, high current density, and high thermal conductivity compare with conventional semiconductor materials even it has single atomic thickness. Especially, since graphene has fantastic electrical properties many researchers are believed that graphene will be replacing Si based technology. In order to realize it, we need to prepare the large and uniform graphene. Chemical vapor deposition (CVD) method is the most promising technique for synthesizing large and uniform graphene. Unfortunately, CVD method requires transfer process from metal catalyst. In transfer process, supporting polymer film (Such as poly (methyl methacrylate)) is widely used for protecting graphene. After transfer process, polymer layer is removed by organic solvents. However, it is impossible to remove it completely. These organic residues on graphene surface induce quality degradation of graphene since it disturbs movement of electrons. Thus, in order to get an intrinsic property of graphene completely remove of the organic residues is the most important. Here, we introduce modified wet graphene transfer method without PMMA. First of all, we grow the graphene from Cu foil using CVD method. And then, we deposited several metal films on graphene for transfer layer instead of PMMA. Finally, we fabricate graphene FET devices. Our approaches show low defect density and non-organic residues in comparison with PMMA coated graphene through Raman spectroscopy, SEM and AFM. In addition, clean graphene FET shows intrinsic electrical characteristic and high carrier mobility.

  • PDF