• 제목/요약/키워드: clay intercalation

Search Result 80, Processing Time 0.027 seconds

Preparation and Properties of NBR-Clay Hybrid Membranes (NBR-Clay 하이브리드 막의 제조 및 물성)

  • 남상용;김영진
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.132-141
    • /
    • 2004
  • NBR-Clay hybrid membranes were prepared by melt intercalation method with internal mixer and two roll mills. MMT was intercalated or ekfoliated by the NBR and it was confirmed by X-ray diffraction method. D-spacing of the characteristic peak from MMT plate in WAXD was moved and diminished. Gas permeability, mechanical properties and thermal properties of the NBR-Clay hybrid membranes were investigated. Gas permeability through the NBR-Clay hybrid membranes decreased due to increased tortuosity made by intercalation of clay in NBR.

Preparation and Properties of SEBS (Styrene Ethylene Butadiene Styrene Copolymer)-Clay Hybrid Gas Barrier Membranes (Gas Barrier성 SEBS (Styrene Ethylene Butadiene Styrene Copolymer)-Clay 하이브리드 막의 제조 및 물성)

  • Nam Sang Yong;Yeom Bong Yeol;Min Byoung Ryul;Kim Young Jin
    • Membrane Journal
    • /
    • v.15 no.1
    • /
    • pp.62-69
    • /
    • 2005
  • SEBS-clay hybrid membranes were prepared by melt intercalation method with internal mixer. In the hybrid, the amount of clay content was fixed to 5 phr. MMT was intercalated or exfoliated by the ionomer and it was confirmed by X-ray diffraction method. D-spacing of the characteristic peak from MMT plate in SAXD was moved and diminished. Gas permeability, mechanical properties and thermal properties of the SEBS-clay hybrid membranes were investigated. Gas permeability through the SEBS-clay hybrid membranes decreased due to increased tortuosity made by intercalation of clay in SEBS.

Preparation and Properties of Ionomer-Clay Hybrid Gas Barrier Membranes (Gas Barrier성 Ionomer-Clay 하이브리드 막의 제조 및 물성)

  • Nam Sang Yong;Goo Hyung Seo;Kim In Ho;Kim Young Jin;Joo Dae Seong;Park Ji Soon;Kim Jin Hak
    • Membrane Journal
    • /
    • v.14 no.4
    • /
    • pp.320-328
    • /
    • 2004
  • Ionomer-Clay hybrid membranes were prepared by melt intercalation method with twin extruder. MMT was intercalated or exfoliated by the ionomer and it was confirmed by X-ray diffraction method. D-spacing of the characteristic peak from MMT plate in WAXD was moved and diminished. Gas permeability, mechanical properties and thermal properties of the ionomer-clay hybrid membranes were investigated. Gas permeability through the ionomer-clay hybrid membranes decreased due to increased tortuosity made by intercalation of clay in Ionomer.

Fabrication of Biodegradable Nanocomposite Using Microwave Melted Intercalation Method (마이크로파 용융삽입법을 이용한 생분해성 나노복합체의 제조)

  • Ha, Won Jo;Sin, Jun Sik;Song, Seung Uk;Kim, Jun Ho;Son, Se Mo;Park, Seong Su
    • Journal of Environmental Science International
    • /
    • v.13 no.4
    • /
    • pp.429-434
    • /
    • 2004
  • The purpose of this study was to investigate the possibility of application of microwave energy for the fabrication of polymer/clay nanocomposite. APES/Clay nanocomposites were prepared at 13$0^{\circ}C$ for 30min with various content of clay by melt-intercalation method under classical and microwave heating source. APES/Clay samples were characterized by the means of X-ray diffractometry(XRD), thermal gravimetric analysis(TGA), and rheometric dynamic analysis(RDA). It was found that intercalated or exfoliated state was obtained in the samples according to the condition of organic modification, clay content, and heating source.

The Effect of Clay Concentration on Mechanical and Water Barrier Properties of Chitosan-Based Nanocomposite Films

  • Rhim, Jong-Whan
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.925-930
    • /
    • 2006
  • Chitosan-based nanocomposite films were prepared using a solution intercalation method incorporating varying amounts of organically modified montmorillonite (Cloisite 30B) from 0 to 30 wt%. The nanocomposite films prepared were optically clear despite a slight decrease in the transmittance due to the spatial distribution of nanoclay. X-ray diffraction patterns indicated that a certain degree of intercalation or exfoliation formed when the amount of clay in the film was low and that microscale tactoids formed when the clay content in the sample was high (more than 10 wt%). The tensile strength (TS) of the chitosan film increased when the clay was incorporated up to 10 wt% and then decreased with further increases in the clay content of the film. The elongation at break (E) increased slightly upon the addition of low levels of clay up to 5 wt% and then decreased with further increases in the amount of the clay in the film. The water vapor permeability (WVP) decreased exponentially with increasing clay content. The water solubility (WS) and swelling ratio (SR) of the nanocomposite films decreased slightly, indicating that the water resistance of the chitosan film increased due to the incorporation of the nanoclay.

Intercalation behavior study of ibuprofen/clay organic-inorganic nanocomposites as drug release system (약물 방출 시스템으로서 이부프로펜/클레이 유-무기 나노복합체의 층간삽입 거동 연구)

  • Choi, Bong-Seok;Kim, Dong-Hyun;Kim, Tae-Wan;Jin, Heoyng-Ho;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.6
    • /
    • pp.240-245
    • /
    • 2011
  • This research focused on the intercalation behavior of recrystallized ibuprofen into clay as a sustained release drug carrier. The intercalation behaviors of ibuprofen were determined by X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The basal spacing ($d_{001}$) of clay increased from 1.2 nm to 1.5 nm by ibuprofen molecules. The segmental motion effect of ibuprofen into the clay interlayer spacing also increased the thermal stability of the ibuprofen/clay nanocomposites. The in vitro drug release results of nanocomposites showed that ibuprofen was released from clay steadily.

Modified Effects or Surfactants with Polymer-Clay Nanocomposites (고분자-점토 나노복합체에 관한 계면활성제의 개질 영향)

  • Kim, Hong-Un;Bang, Yun-Hyuk;Choi, Soo-Myung;Lim, Kyung-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.290-299
    • /
    • 2006
  • This article investigated to polymer-clay nanocomposite, especially in interfacial respect clay structure, its dispersion into polymer matrix, and clay modification is studied. The cationic exchange of surfactants with clay gallery results in preparing organo-clay capable of compatiblizing to monomer or polymer and increasing interlayer adhesion energy due to expansion of interlayer spacing. The orientation of surfactant in clay gallery is affected by chemical structure and charge density of clay, and interlayer spacing and volume is increased with alkyl chain length of surfactant, or charge density of clay. Also, the interaction between clay and polymer in preparing polymer-clay nanocomposite is explained thermodynamically. In the future, the study and development of polymer-clay nanocomposite is paid attention to the interfacial adhesion, clay dispersion within polymer, mechanism of clay intercalation or exfoliation.

One-Pot Synthesis of Clay-dispersed Poly(styrene-co-acrylonitrile) Copolymer Nanocomposite using Poly($\varepsilon$-caprolactone) as a Compatibilizer

  • Ko, Moon-Bae
    • Macromolecular Research
    • /
    • v.8 no.4
    • /
    • pp.186-191
    • /
    • 2000
  • Clay-dispersed nanocomposites have been prepared by simple melt-mixing of three components, i.e. poly (styrene co-acrylonitrile) copolymer (SAN), poly ($\xi$-caprolactone ) (PCL), and an organophilic clay(Cloisite(R) 30A). In the present study, poly($\xi$-caprolactone) was added in the mixtures in order to facilitate the intercalation of SAN into the gallery of silicate layers, and the molecular weight effects of PCL on the dispersion of silicate layers were compared by changing the amount of added PCL. The degree of dispersion of 10-$\AA$-thick silicate layers of clay in the nanocomposites was investigated by using an X-ray diffractometer and a transmission electron microscope. It was found that PCL added in the mixture facilitate the intercalation of SAN copolymers into the galleries of silicate layers modified with an organic intercalant, resulting in the better dispersion of clay. It was, also, observed that the processing temperature influences the degree of clay dispersion.

  • PDF

Hybrid Nanocomposites: Processing and Properties

  • Shi, Y.;Kanny, K.;Jawahar, P.
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.365-379
    • /
    • 2009
  • Epoxy/S2-glass reinforced composites (SGRPs) infused with Cloisite 30B nanoclays were manufactured using the vacuum assisted resin infusion molding (VARIM) process. Prior to infusion, the matrix and clays were thoroughly mixed using a direct mixing technique (DMT) and a high shear mixing technique (HSMT) to ensure uniform dispersion of the nanoclays. Structures with varying clay contents (1-3 wt%) were manufactured. Both pristine and SGRP nanocomposites were then subjected to mechanical testing. For the specimens manufactured by DMT, the tensile, flexural, and compressive modulus increased with increasing the clay content. Similarly, the tensile, flexural, compressive, interlaminate shear and impact strength increased with the addition of 1 wt% clay: however the trend reversed with further increase in the clay content. Specimens manufactured by HSMT showed superior properties compared to those of nanocomposites containing 1 wt% clay produced by DMT. In order to understand these phenomena a morphological study was conducted. Transmission electron microscopy (TEM) micrographs revealed that HSMT led to better dispersion and changed the nanoclay structure from orderly intercalation to disorderly intercalation giving multi-directional strength.

Disordering of Clay Layers in the Nylon 6/Clay Nanocomposites Prepared by Anionic Polymerization

  • Park Jung Hoon;Kim Woo Nyon;Kye Hyoung-san;Lee Sang-Soo;Park Min;Kim Junkyung;Lim Soonho
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.367-372
    • /
    • 2005
  • As a preliminary work for the preparation of nylon 6/c1ay nanocomposites by reactive extrusion, nylon 6/c1ay nanocomposites were prepared by anionic polymerization in a flask. In order to investigate the effect of the intercalation of clay layers, the clay feeding times, such as in pre-mixing where the clay was fed before initiation of polymerization and in after-mixing method where the clay was fed after initiation of polymerization, were changed. The appearance of the WAXD peak of nanocomposites prepared by the pre-mixing method was obvious and the tensile strength was decreased compared with that of pure nylon 6, which indicates that the clay layers were not dispersed and distributed. During the preparation of the nanocomposites by the after-mixing method, disordering of the clay layers was observed with increasing clay addition time and was suspected to result from the rapid polymerization of nylon 6 within the clay layers.