• Title/Summary/Keyword: clay film

Search Result 48, Processing Time 0.022 seconds

The Effect of Clay Concentration on Mechanical and Water Barrier Properties of Chitosan-Based Nanocomposite Films

  • Rhim, Jong-Whan
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.925-930
    • /
    • 2006
  • Chitosan-based nanocomposite films were prepared using a solution intercalation method incorporating varying amounts of organically modified montmorillonite (Cloisite 30B) from 0 to 30 wt%. The nanocomposite films prepared were optically clear despite a slight decrease in the transmittance due to the spatial distribution of nanoclay. X-ray diffraction patterns indicated that a certain degree of intercalation or exfoliation formed when the amount of clay in the film was low and that microscale tactoids formed when the clay content in the sample was high (more than 10 wt%). The tensile strength (TS) of the chitosan film increased when the clay was incorporated up to 10 wt% and then decreased with further increases in the clay content of the film. The elongation at break (E) increased slightly upon the addition of low levels of clay up to 5 wt% and then decreased with further increases in the amount of the clay in the film. The water vapor permeability (WVP) decreased exponentially with increasing clay content. The water solubility (WS) and swelling ratio (SR) of the nanocomposite films decreased slightly, indicating that the water resistance of the chitosan film increased due to the incorporation of the nanoclay.

Characterization of Rockfish Skin Gelatin Composite Films (우럭 껍질 젤라틴 복합필름의 특성)

  • Beak, Song-Ee;Kim, Hyeri;Song, Kyung Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.3
    • /
    • pp.394-399
    • /
    • 2017
  • To resolve environmental pollution caused by synthetic packaging materials, biodegradable films have been studied as an alternative. In this study, we prepared rockfish skin gelatin (RFG) and nano-clay (Cloisite $Na^+$ and Cloisite 10A) composite films to compare the effects of nano-clay on the physical properties of RFG film. Gelatin was extracted from rockfish skin and used to prepare RFG film with sorbitol as a plasticizer. Tensile strength (TS), water vapor permeability (WVP), and water solubility (WS) of the RFG film were 15.0 MPa, $2.70{\times}10^{-9}g\;m/m^2\;s\;Pa$, and 53.8%, respectively. Addition of nano-clay to the RFG film increased TS and decreased WVP and WS. The X-ray diffraction analysis and scanning electron microscopic results suggest that RFG/nano-clay composite films formed an exfoliated structure. These results indicate that RFG/nano-clay composite films can be applied as biodegradable packaging materials in the food industry.

Effect of Clay Type and Concentration on Optical, Tensile and Water Vapor Barrier Properties of Soy Protein Isolate/Clay Nanocomposite Films

  • Rhim, Jong-Whan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.15 no.3
    • /
    • pp.99-104
    • /
    • 2009
  • Soy protein isolate (SPI)-based nanocomposite films with three different types of nanoclays, such as Cloisite $Na^+$, Cloisite 20A, and Cloisite 30B, were prepared using a solution casting method, and their optical, tensile, and water vapor barrier properties were determined to investigate the effect of nano-clay type on film properties. Among the tested nanoclays, Cloisite $Na^+$, a hydrophilic montmorillonite (MMT), exhibited the highest transparency with least opaqueness, the highest tensile strength, and the highest water vapor barrier properties, indicating Cloisite $Na^+$ is the most compatible with SPI polymer matrix to form nanocomposite films. The film properties of SPI/Cloisite $Na^+$ nanocomposite films were strongly dependent on the concentration of the clay. Film properties such as optical, tensile, and water vapor barrier properties improved significantly (p<0.05) as the concentration of clay increased. However, the effectiveness of addition of the clay reduced above a certain level (i.e., 5wt%), indicating that there is an optimum amount of clay addition to exploit the full advantage of nanocmposite films.

  • PDF

A Study on the Leakage Interception Work in the Irrigation Canal Founding on the Sandy Gravel or the Porous Soil (모래자갈과 누수성 토질을 기반으로하는 용수로의 누수방지에 대한 연구)

  • 강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.2
    • /
    • pp.1965-1970
    • /
    • 1970
  • The experiment was carried out in order to improve the leakage stopping work in the irrigation canal founding on the porous soil. But the experiment had many problems to be studied more owing to the insufficient time and facilities. The results obtained are summarized as follows; 1. Polyethylene film is estimated not to make strength decrease owing to buring in the subsoil, but to make owing to the sunlight. 2. Coated nylon shows the tendency to deteriorate strength when it is buried in the earth or exposed to the sun for long time, but leakage is all but impermeability generally. 3. Leakage loss rates for one hour show some differences in the canal to be full with water in accordance with operating methods, that is, the clay lining section is 12.6%, the coated nylon lining section is 1.7%, the polyethylene film lining section is 1.3%, respectively. 4. Leakage quantities per wetted perimeter unit area show $3.556cc/cm^2/hr$. in the clay lining section, $1.574cc/cm^2/hr$. in the coated nylon section, $0.695cc/cm^2/hr$. in the polyethylene film lining section, respectively. 5. When the construction fund make the clay lining section as a standard, the polyethylene film section is 92.1%, the coated nylon section is 174.2%, respectively. But, the unit cost of execution may be low when the polyethylene film and the coated nylon will enable to mass-produce for the purpose of execution.

  • PDF

Mechanical and Water Barrier Properties of Soy Protein and Clay Mineral Composite Films

  • Rhim, Jong-Whan;Lee, Jun-Ho;Kwak, Hyo-Sup
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.112-116
    • /
    • 2005
  • Composite films were prepared with soy protein isolate (SPI) and various clay minerals by casting from polymer and clay water suspension. Effects of clay minerals on film thickness, moisture content (MC), tensile strength (TS), elongation at break (E), water vapor permeability (WVP), and water solubility (WS) were tested. Properties including thickness, surface smoothness, and homogeneity of films prepared with organically modified montmorillonite (O-MMT), Wamok clay (W-clay), bentonite, talc powder, and zeolite were comparable to those of control SPI films. TS increased significantly (p<0.05) in films prepared with O-MMT and bentonite, while WVP decreased significantly (p<0.05) in bentonite-added films. WS of most nanocomposite films decreased significantly (p<0.05).

Preparation and Gas Barrier Properties of Chitosan/Clay Nanocomposite Film (Chitosan/Clay 나노복합재료 필름의 제조와 기체투과 특성)

  • Nam Sang Yong;Park Ji Soon;Rhim Ji Won;Park Byung Gil;Kong Sung-Ho
    • Membrane Journal
    • /
    • v.15 no.3
    • /
    • pp.247-254
    • /
    • 2005
  • Chitosan film has potential applications in agriculture, food, and pharmacy. However, films made only from chitosan lack gas barrier and have poor mechanical properties. For enhanced gas barrier and mechanical properties, chitosan/clay nanocomposites have been prepared with montmorillonite (MMT) which is a layered structure of clays and chitosan. The cationic biopolymer, chitosan is intercalated into $Na^+-montmorillonite$ through cationic exchange and hydrogen bonding process. Diluted acetic acid is used as solvent f3r dissolving and dispersing chitosan. Chitosan was intercalated or exfoliated in MMT and it was confirmed by X-ray diffraction method. D-spacing of the characteristic peak from MMT plate in chitosan/clay nanocomposites was moved and diminished. The thermal stability and the mechanical properties of the nanocomposites are measured by TGA and Universal Testing Machine. Gas permeability through the chitosan/clay nanocomposites films decreased due to increased tortuosity made by intercalation of clay in chitosan.

Characterizations of Flexible Clay-PVA Hybrid Films: Thermo-optical Properties, Morphology, and Gas Permeability (유연한 점토-폴리(비닐 알코올) 하이브리드 필름의 특성 연구: 열적.광학적 성질, 모폴로지, 및 가스 투과성)

  • Shin, Ji-Eun;Ham, Mi-Ran;Kim, Jeong-Cheol;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.402-408
    • /
    • 2011
  • To improve $Na^+$-saponite(SPT) film flexibility, we prepared SPT hybrid clay films with various poly(vinyl alcohol) (PVA) concentrations(0~10 wt%) using the solution intercalation method. In this study, we investigated the thermo-optical properties, morphology, and gas permeability of the SPT hybrid films. We also examined the relationship between the film properties and PVA content using wide angle X-ray diffraction measurements(XRD), field emission scanning electron microscopy(FESEM), differential scanning calorimetry(DSC), thermogravimetric analysis(TGA), thermomechanical analysis(TMA), ultraviolet-visible(UV-vis) spectroscopy, and oxygen transmission rate($O_2$TR) testing. The properties of the clay hybrid films were strongly affected by PVA filler content. The presence of a small amount of PVA was sufficient to improve the flexibility of SPT hybrid films.

Study and Application of the New Stick Make Up Product Using Clay Minerals as Binder & Buffer.

  • Kim, Sang-Je;Shin, Dong-Uk;Cho, Pan-Gu;Jung, Chul-Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.4 s.34
    • /
    • pp.97-110
    • /
    • 1999
  • The new stick make-up product was studied by using a gel, which is a viscous complex formed with clay minerals, vitamins A and E and fluorinated liquid polymer with a 1500 molecular weight. The gel cannot be obtained with any random combination of clay minerals and the ingredients described above. It takes the sequential manufacturing method as follows to get this kind of gel. Firstly, clay minerals and liquid polymers have to be pre-mixed in order to saturate the liquid polymers with the clay minerals. Then the on-processed gel has to be finely crystallized. The clay minerals, which are the core elements for this gel, were used as a function of Binder & Buffer and liquid polymer was mixed together for the deterioration of the surface tension of each component and to form a functional film in the gel. This liquid polymer was combined with clay minerals because it is not miscible with most oils and solvents. Waxes have a function of keeping a solid status in the stick. We reduced the usage of waxes by putting clay minerals as buffer in the proportion of 0.5:1 with oil phase. Ceramide takes care of the skin when used regularly and maintains the skin's moisture. Vitamins A and E contribute to preventing skin aging by the activation of skin cells. We could get the stable viscous gel, which has about 80% oil phase using clay minerals and liquid polymer. The crystalline structures of gel were surface-chemically-analyzed using SEM and Image Analyzer and were thermodynamically analyzed using DSC. Surface tension test and softness were done by Rheometer. In the end, these characteristics were verified by consumer panel tests in Seoul, Daegeon and Pusan in Korea and Hokkaido, Osaka and Miyazaki in Japan with correlation to the climate.

  • PDF