• Title/Summary/Keyword: classifiers

Search Result 743, Processing Time 0.027 seconds

Face Detection System Based on Candidate Extraction through Segmentation of Skin Area and Partial Face Classifier (피부색 영역의 분할을 통한 후보 검출과 부분 얼굴 분류기에 기반을 둔 얼굴 검출 시스템)

  • Kim, Sung-Hoon;Lee, Hyon-Soo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.2
    • /
    • pp.11-20
    • /
    • 2010
  • In this paper we propose a face detection system which consists of a method of face candidate extraction using skin color and a method of face verification using the feature of facial structure. Firstly, the proposed extraction method of face candidate uses the image segmentation and merging algorithm in the regions of skin color and the neighboring regions of skin color. These two algorithms make it possible to select the face candidates from the variety of faces in the image with complicated backgrounds. Secondly, by using the partial face classifier, the proposed face validation method verifies the feature of face structure and then classifies face and non-face. This classifier uses face images only in the learning process and does not consider non-face images in order to use less number of training images. In the experimental, the proposed method of face candidate extraction can find more 9.55% faces on average as face candidates than other methods. Also in the experiment of face and non-face classification, the proposed face validation method obtains the face classification rate on the average 4.97% higher than other face/non-face classifiers when the non-face classification rate is about 99%.

Classification Algorithms for Human and Dog Movement Based on Micro-Doppler Signals

  • Lee, Jeehyun;Kwon, Jihoon;Bae, Jin-Ho;Lee, Chong Hyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.1
    • /
    • pp.10-17
    • /
    • 2017
  • We propose classification algorithms for human and dog movement. The proposed algorithms use micro-Doppler signals obtained from humans and dogs moving in four different directions. A two-stage classifier based on a support vector machine (SVM) is proposed, which uses a radial-based function (RBF) kernel and $16^{th}$-order linear predictive code (LPC) coefficients as feature vectors. With the proposed algorithms, we obtain the best classification results when a first-level SVM classifies the type of movement, and then, a second-level SVM classifies the moving object. We obtain the correct classification probability 95.54% of the time, on average. Next, to deal with the difficult classification problem of human and dog running, we propose a two-layer convolutional neural network (CNN). The proposed CNN is composed of six ($6{\times}6$) convolution filters at the first and second layers, with ($5{\times}5$) max pooling for the first layer and ($2{\times}2$) max pooling for the second layer. The proposed CNN-based classifier adopts an auto regressive spectrogram as the feature image obtained from the $16^{th}$-order LPC vectors for a specific time duration. The proposed CNN exhibits 100% classification accuracy and outperforms the SVM-based classifier. These results show that the proposed classifiers can be used for human and dog classification systems and also for classification problems using data obtained from an ultra-wideband (UWB) sensor.

A Tree Regularized Classifier-Exploiting Hierarchical Structure Information in Feature Vector for Human Action Recognition

  • Luo, Huiwu;Zhao, Fei;Chen, Shangfeng;Lu, Huanzhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1614-1632
    • /
    • 2017
  • Bag of visual words is a popular model in human action recognition, but usually suffers from loss of spatial and temporal configuration information of local features, and large quantization error in its feature coding procedure. In this paper, to overcome the two deficiencies, we combine sparse coding with spatio-temporal pyramid for human action recognition, and regard this method as the baseline. More importantly, which is also the focus of this paper, we find that there is a hierarchical structure in feature vector constructed by the baseline method. To exploit the hierarchical structure information for better recognition accuracy, we propose a tree regularized classifier to convey the hierarchical structure information. The main contributions of this paper can be summarized as: first, we introduce a tree regularized classifier to encode the hierarchical structure information in feature vector for human action recognition. Second, we present an optimization algorithm to learn the parameters of the proposed classifier. Third, the performance of the proposed classifier is evaluated on YouTube, Hollywood2, and UCF50 datasets, the experimental results show that the proposed tree regularized classifier obtains better performance than SVM and other popular classifiers, and achieves promising results on the three datasets.

On-line Signature Verification Using Fusion Model Based on Segment Matching and HMM (구간 분할 및 HMM 기반 융합 모델에 의한 온라인 서명 검증)

  • Yang Dong Hwa;Lee Dae-Jong;Chun Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.12-17
    • /
    • 2005
  • The segment matching method shows better performance than the global and points-based methods to compare reference signature with an input signature. However, the segment-to-segment matching method has the problem of decreasing recognition rate according to the variation of partitioning points. This paper proposes a fusion model based on the segment matching and HMM to construct a more reliable authentic system. First, a segment matching classifier is designed by conventional technique to calculate matching values lot dynamic information of signatures. And also, a novel HMM classifier is constructed by using the principal component analysis to calculate matching values for static information of signatures. Finally, SVM classifier is adopted to effectively combine two independent classifiers. From the various experiments, we find that the proposed method shows better performance than the conventional segment matching method.

Webcam-Based 2D Eye Gaze Estimation System By Means of Binary Deformable Eyeball Templates

  • Kim, Jin-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.575-580
    • /
    • 2010
  • Eye gaze as a form of input was primarily developed for users who are unable to use usual interaction devices such as keyboard and the mouse; however, with the increasing accuracy in eye gaze detection with decreasing cost of development, it tends to be a practical interaction method for able-bodied users in soon future as well. This paper explores a low-cost, robust, rotation and illumination independent eye gaze system for gaze enhanced user interfaces. We introduce two brand-new algorithms for fast and sub-pixel precise pupil center detection and 2D Eye Gaze estimation by means of deformable template matching methodology. In this paper, we propose a new algorithm based on the deformable angular integral search algorithm based on minimum intensity value to localize eyeball (iris outer boundary) in gray scale eye region images. Basically, it finds the center of the pupil in order to use it in our second proposed algorithm which is about 2D eye gaze tracking. First, we detect the eye regions by means of Intel OpenCV AdaBoost Haar cascade classifiers and assign the approximate size of eyeball depending on the eye region size. Secondly, using DAISMI (Deformable Angular Integral Search by Minimum Intensity) algorithm, pupil center is detected. Then, by using the percentage of black pixels over eyeball circle area, we convert the image into binary (Black and white color) for being used in the next part: DTBGE (Deformable Template based 2D Gaze Estimation) algorithm. Finally, using DTBGE algorithm, initial pupil center coordinates are assigned and DTBGE creates new pupil center coordinates and estimates the final gaze directions and eyeball size. We have performed extensive experiments and achieved very encouraging results. Finally, we discuss the effectiveness of the proposed method through several experimental results.

A Study on Performance of ML Algorithms and Feature Extraction to detect Malware (멀웨어 검출을 위한 기계학습 알고리즘과 특징 추출에 대한 성능연구)

  • Ahn, Tae-Hyun;Park, Jae-Gyun;Kwon, Young-Man
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.211-216
    • /
    • 2018
  • In this paper, we studied the way that classify whether unknown PE file is malware or not. In the classification problem of malware detection domain, feature extraction and classifier are important. For that purpose, we studied what the feature is good for classifier and the which classifier is good for the selected feature. So, we try to find the good combination of feature and classifier for detecting malware. For it, we did experiments at two step. In step one, we compared the accuracy of features using Opcode only, Win. API only, the one with both. We founded that the feature, Opcode and Win. API, is better than others. In step two, we compared AUC value of classifiers, Bernoulli Naïve Bayes, K-nearest neighbor, Support Vector Machine and Decision Tree. We founded that Decision Tree is better than others.

Fast Modulation Classifier for Software Radio (소프트웨어 라디오를 위한 고속 변조 인식기)

  • Park, Cheol-Sun;Jang, Won;Kim, Dae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.425-432
    • /
    • 2007
  • In this paper, we deals with automatic modulation classification capable of classifying incident signals without a priori information. The 7 key features which have good properties of sensitive with modulation types and insensitive with SNR variation are selected. The numerical simulations for classifying 9 modulation types using the these features are performed. The numerical simulations of the 4 types of modulation classifiers are performed the investigation of classification accuracy and execution time to implement the fast modulation classifier in software radio. The simulation result indicated that the execution time of DTC was best and SVC and MDC showed good classification performance. The prototype was implemented with DTC type. With the result of field trials, we confirmed the performance in the prototype was agreed with the numerical simulation result of DTC.

An Improved Normalization Method for Haar-like Features for Real-time Object Detection (실시간 객체 검출을 위한 개선된 Haar-like Feature 정규화 방법)

  • Park, Ki-Yeong;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8C
    • /
    • pp.505-515
    • /
    • 2011
  • This paper describes a normalization method of Haar-like features used for object detection. Previous method which performs variance normalization on Haar-like features requires a lot of calculations, since it uses an additional integral image for calculating the standard deviation of intensities of pixels in a candidate window and increases possibility of false detection in the area where variance of brightness is small. The proposed normalization method can be performed much faster than the previous method by not using additional integral image and classifiers which are trained with the proposed normalization method show robust performance in various lighting conditions. Experimental result shows that the object detector which uses the proposed method is 26% faster than the one which uses the previous method. Detection rate is also improved by 5% without increasing false alarm rate and 45% for the samples whose brightness varies significantly.

A Fast and Efficient Haar-Like Feature Selection Algorithm for Object Detection (객체검출을 위한 빠르고 효율적인 Haar-Like 피쳐 선택 알고리즘)

  • Chung, Byung Woo;Park, Ki-Yeong;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.6
    • /
    • pp.486-491
    • /
    • 2013
  • This paper proposes a fast and efficient Haar-like feature selection algorithm for training classifier used in object detection. Many features selected by Haar-like feature selection algorithm and existing AdaBoost algorithm are either similar in shape or overlapping due to considering only feature's error rate. The proposed algorithm calculates similarity of features by their shape and distance between features. Fast and efficient feature selection is made possible by removing selected features and features with high similarity from feature set. FERET face database is used to compare performance of classifiers trained by previous algorithm and proposed algorithm. Experimental results show improved performance comparing classifier trained by proposed method to classifier trained by previous method. When classifier is trained to show same performance, proposed method shows 20% reduction of features used in classification.

Pose and Expression Invariant Alignment based Multi-View 3D Face Recognition

  • Ratyal, Naeem;Taj, Imtiaz;Bajwa, Usama;Sajid, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4903-4929
    • /
    • 2018
  • In this study, a fully automatic pose and expression invariant 3D face alignment algorithm is proposed to handle frontal and profile face images which is based on a two pass course to fine alignment strategy. The first pass of the algorithm coarsely aligns the face images to an intrinsic coordinate system (ICS) through a single 3D rotation and the second pass aligns them at fine level using a minimum nose tip-scanner distance (MNSD) approach. For facial recognition, multi-view faces are synthesized to exploit real 3D information and test the efficacy of the proposed system. Due to optimal separating hyper plane (OSH), Support Vector Machine (SVM) is employed in multi-view face verification (FV) task. In addition, a multi stage unified classifier based face identification (FI) algorithm is employed which combines results from seven base classifiers, two parallel face recognition algorithms and an exponential rank combiner, all in a hierarchical manner. The performance figures of the proposed methodology are corroborated by extensive experiments performed on four benchmark datasets: GavabDB, Bosphorus, UMB-DB and FRGC v2.0. Results show mark improvement in alignment accuracy and recognition rates. Moreover, a computational complexity analysis has been carried out for the proposed algorithm which reveals its superiority in terms of computational efficiency as well.