• Title/Summary/Keyword: classifiers

Search Result 743, Processing Time 0.023 seconds

Feature Based Techniques for a Driver's Distraction Detection using Supervised Learning Algorithms based on Fixed Monocular Video Camera

  • Ali, Syed Farooq;Hassan, Malik Tahir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3820-3841
    • /
    • 2018
  • Most of the accidents occur due to drowsiness while driving, avoiding road signs and due to driver's distraction. Driver's distraction depends on various factors which include talking with passengers while driving, mood disorder, nervousness, anger, over-excitement, anxiety, loud music, illness, fatigue and different driver's head rotations due to change in yaw, pitch and roll angle. The contribution of this paper is two-fold. Firstly, a data set is generated for conducting different experiments on driver's distraction. Secondly, novel approaches are presented that use features based on facial points; especially the features computed using motion vectors and interpolation to detect a special type of driver's distraction, i.e., driver's head rotation due to change in yaw angle. These facial points are detected by Active Shape Model (ASM) and Boosted Regression with Markov Networks (BoRMaN). Various types of classifiers are trained and tested on different frames to decide about a driver's distraction. These approaches are also scale invariant. The results show that the approach that uses the novel ideas of motion vectors and interpolation outperforms other approaches in detection of driver's head rotation. We are able to achieve a percentage accuracy of 98.45 using Neural Network.

An Assessment of a Random Forest Classifier for a Crop Classification Using Airborne Hyperspectral Imagery

  • Jeon, Woohyun;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.141-150
    • /
    • 2018
  • Crop type classification is essential for supporting agricultural decisions and resource monitoring. Remote sensing techniques, especially using hyperspectral imagery, have been effective in agricultural applications. Hyperspectral imagery acquires contiguous and narrow spectral bands in a wide range. However, large dimensionality results in unreliable estimates of classifiers and high computational burdens. Therefore, reducing the dimensionality of hyperspectral imagery is necessary. In this study, the Random Forest (RF) classifier was utilized for dimensionality reduction as well as classification purpose. RF is an ensemble-learning algorithm created based on the Classification and Regression Tree (CART), which has gained attention due to its high classification accuracy and fast processing speed. The RF performance for crop classification with airborne hyperspectral imagery was assessed. The study area was the cultivated area in Chogye-myeon, Habcheon-gun, Gyeongsangnam-do, South Korea, where the main crops are garlic, onion, and wheat. Parameter optimization was conducted to maximize the classification accuracy. Then, the dimensionality reduction was conducted based on RF variable importance. The result shows that using the selected bands presents an excellent classification accuracy without using whole datasets. Moreover, a majority of selected bands are concentrated on visible (VIS) region, especially region related to chlorophyll content. Therefore, it can be inferred that the phenological status after the mature stage influences red-edge spectral reflectance.

Voice Classification Algorithm for Sasang Constitution Using Support Vector Machine (SVM을 이용한 음성 사상체질 분류 알고리즘)

  • Kang, Jae-Hwan;Do, Jun-Hyeong;Kim, Jong-Yeol
    • Journal of Sasang Constitutional Medicine
    • /
    • v.22 no.1
    • /
    • pp.17-25
    • /
    • 2010
  • 1. Objectives: Voice diagnosis has been used to classify individuals into the Sasang constitution in SCM(Sasang Constitution Medicine) and to recognize his/her health condition in TKM(Traditional Korean Medicine). In this paper, we purposed a new speech classification algorithm for Sasang constitution. 2. Methods: This algorithm is based on the SVM(Support Vector Machine) technique, which is a classification method to classify two distinct groups by finding voluntary nonlinear boundary in vector space. It showed high performance in classification with a few numbers of trained data set. We designed for this algorithm using 3 SVM classifiers to classify into 4 groups, which are composed of 3 constitutional groups and additional indecision group. 3. Results: For the optimal performance, we found that 32.2% of the voice data were classified into three constitutional groups and 79.8% out of them were grouped correctly. 4. Conclusions: This new classification method including indecision group appears efficient compared to the standard classification algorithm which classifies only into 3 constitutional groups. We find that more thorough investigation on the voice features is required to improve the classification efficiency into Sasang constitution.

A study on intra-pulse modulation recognition using fearture parameters (특징인자를 활용한 펄스 내 변조 형태 식별방법에 관한 연구)

  • Yu, KiHun;Han, JinWoo;Park, ByungKoo;Lee, DongWon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.754-756
    • /
    • 2013
  • The modern Electronic Warfare Receivers are required to the current radar technologies like the Low Probability of Intercept(LPI) radars to avoid detection. LPI radars have features of intra-pulse modulation differ from existing radar signals. This features require counterworks such as signal confirmation and identification. Hence this paper presents a study on intra-pulse modulation recognition. The proposed method automatically recognizes intra-pulse modulation types such as LFM and NLFM using classifiers extracted from the features of each intra-pulse modulation. Several simulations are also conducted and the simulation results indicate the performance of the given method.

  • PDF

Face Recognition by Combining Linear Discriminant Analysis and Radial Basis Function Network Classifiers (선형판별법과 레이디얼 기저함수 신경망 결합에 의한 얼굴인식)

  • Oh Byung-Joo
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.6
    • /
    • pp.41-48
    • /
    • 2005
  • This paper presents a face recognition method based on the combination of well-known statistical representations of Principal Component Analysis(PCA), and Linear Discriminant Analysis(LDA) with Radial Basis Function Networks. The original face image is first processed by PCA to reduce the dimension, and thereby avoid the singularity of the within-class scatter matrix in LDA calculation. The result of PCA process is applied to LDA classifier. In the second approach, the LDA process Produce a discriminational features of the face image, which is taken as the input of the Radial Basis Function Network(RBFN). The proposed approaches has been tested on the ORL face database. The experimental results have been demonstrated, and the recognition rate of more than 93.5% has been achieved.

  • PDF

Fuzzy Classifier System for Edge Detection

  • Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.52-57
    • /
    • 2003
  • In this paper, we propose a Fuzzy Classifier System(FCS) to find a set of fuzzy rules which can carry out the edge detection. The classifier system of Holland can evaluate the usefulness of rules represented by classifiers with repeated learning. FCS makes the classifier system be able to carry out the mapping from continuous inputs to outputs. It is the FCS that applies the method of machine learning to the concept of fuzzy logic. It is that the antecedent and consequent of classifier is same as a fuzzy rule. In this paper, the FCS is the Michigan style. A single fuzzy if-then rule is coded as an individual. The average gray levels which each group of neighbor pixels has are represented into fuzzy set. Then a pixel is decided whether it is edge pixel or not using fuzzy if-then rules. Depending on the average of gray levels, a number of fuzzy rules can be activated, and each rules makes the output. These outputs are aggregated and defuzzified to take new gray value of the pixel. To evaluate this edge detection, we will compare the new gray level of a pixel with gray level obtained by the other edge detection method such as Sobel edge detection. This comparison provides a reinforcement signal for FCS which is reinforcement learning. Also the FCS employs the Genetic Algorithms to make new rules and modify rules when performance of the system needs to be improved.

Implementation of Radar Environment Classifier for Adaptive Target Detection (적응표적 탐지용 레이다 환경 분류기 구현)

  • Choi, Beyimg-Gwan;Choi, In-Sik;Kim, Whan-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.157-164
    • /
    • 2005
  • The conventional adaptive detectors can not maintain sufficient detection performance at the presence of non-stationary clutter with unknown characteristics. This is caused by the lack of a priori information about clutter parameters changing over radar coordinates. To solve this problem, it is necessary to use clutter classifiers which have functions, such as the selection of the applied algorithm and its parameters extraction according to clutter conditions. In this paper, we describe the implementation of a clutter environment classifier for adaptive processing. In the environment classifier implemented on Visual C++, the extraction of the parameters and selection of processing algorithm for the adaptive processing unit are possible, and the result of algorithms can be verified at each stage.

SVM을 이용한 지구에 영향을 미치는 Halo CME 예보

  • Choe, Seong-Hwan;Mun, Yong-Jae;Park, Yeong-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.61.1-61.1
    • /
    • 2013
  • In this study we apply Support Vector Machine (SVM) to the prediction of geo-effective halo coronal mass ejections (CMEs). The SVM, which is one of machine learning algorithms, is used for the purpose of classification and regression analysis. We use halo and partial halo CMEs from January 1996 to April 2010 in the SOHO/LASCO CME Catalog for training and prediction. And we also use their associated X-ray flare classes to identify front-side halo CMEs (stronger than B1 class), and the Dst index to determine geo-effective halo CMEs (stronger than -50 nT). The combinations of the speed and the angular width of CMEs, and their associated X-ray classes are used for input features of the SVM. We make an attempt to find the best model by using cross-validation which is processed by changing kernel functions of the SVM and their parameters. As a result we obtain statistical parameters for the best model by using the speed of CME and its associated X-ray flare class as input features of the SVM: Accuracy=0.66, PODy=0.76, PODn=0.49, FAR=0.72, Bias=1.06, CSI=0.59, TSS=0.25. The performance of the statistical parameters by applying the SVM is much better than those from the simple classifications based on constant classifiers.

  • PDF

Feature Selection by Genetic Algorithm and Information Theory (유전자 알고리즘과 정보이론을 이용한 속성선택)

  • Cho, Jae-Hoon;Lee, Dae-Jong;Song, Chang-Kyu;Kim, Yong-Sam;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.94-99
    • /
    • 2008
  • In the pattern classification problem, feature selection is an important technique to improve performance of the classifiers. Particularly, in the case of classifying with a large number of features or variables, the accuracy of the classifier can be improved by using the relevant feature subset to remove the irrelevant, redundant, or noisy data. In this paper we propose a feature selection method using genetic algorithm and information theory. Experimental results show that this method can achieve better performance for pattern recognition problems than conventional ones.

SVM based Bankruptcy Prediction Model for Small & Micro Businesses Using Credit Card Sales Information (신용카드 매출정보를 이용한 SVM 기반 소상공인 부실예측모형)

  • Yoon, Jong-Sik;Kwon, Young-Sik;Roh, Tae-Hyup
    • IE interfaces
    • /
    • v.20 no.4
    • /
    • pp.448-457
    • /
    • 2007
  • The small & micro business has the characteristics of both consumer credit risk and business credit risk. In predicting the bankruptcy for small-micro businesses, the problem is that in most cases, the financial data for evaluating business credit risks of small & micro businesses are not available. To alleviate such problem, we propose a bankruptcy prediction mechanism using the credit card sales information available, because most small businesses are member store of some credit card issuers, which is the main purpose of this study. In order to perform this study, we derive some variables and analyze the relationship between good and bad signs. We employ the new statistical learning technique, support vector machines (SVM) as a classifier. We use grid search technique to find out better parameter for SVM. The experimental result shows that credit card sales information could be a good substitute for the financial data for evaluating business credit risk in predicting the bankruptcy for small-micro businesses. In addition, we also find out that SVM performs best, when compared with other classifiers such as neural networks, CART, C5.0 multivariate discriminant analysis (MDA), and logistic regression.