• Title/Summary/Keyword: classifiers

Search Result 743, Processing Time 0.034 seconds

A credit prediction model of a capital company′s customers using genetic algorithm based integration of multiple classifiers (유전자 알고리즘기반 복수 분류모형 통합에 의한 할부금융고객의 신용예측모형)

  • 이웅규;김홍철
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.161-164
    • /
    • 2001
  • 본 연구에서는 할부금융시장에서의 고객신용예측을 위한 모형으로 여러 가지 인공신경망(Neural Network) 모형들을 유전자 알고리즘(Genetic Algorithm)을 이용하여 통합한 신용예측모형을 제안한다. 10개의 학습된 인공신경망 모형들을 유전자알고리즘을 이용하여 종류별로 통합하여 MLP(Multi-Layered Perceptrons), Linear, RBF(Radial Basis Function) 세 가지의 대표모델을 얻고 이를 다시 하나의 인공신경망 모델로 통합하였다. 이를 통합되기 이전의 각각의 인공신경망 모형들과 성능을 비교, 분석하여 본 연구에서 제안한 통합모형의 유효성과 통합방법의 타당성을 제시하였다.

  • PDF

Speech Emotion Recognition on a Simulated Intelligent Robot (모의 지능로봇에서의 음성 감정인식)

  • Jang Kwang-Dong;Kim Nam;Kwon Oh-Wook
    • MALSORI
    • /
    • no.56
    • /
    • pp.173-183
    • /
    • 2005
  • We propose a speech emotion recognition method for affective human-robot interface. In the Proposed method, emotion is classified into 6 classes: Angry, bored, happy, neutral, sad and surprised. Features for an input utterance are extracted from statistics of phonetic and prosodic information. Phonetic information includes log energy, shimmer, formant frequencies, and Teager energy; Prosodic information includes Pitch, jitter, duration, and rate of speech. Finally a pattern classifier based on Gaussian support vector machines decides the emotion class of the utterance. We record speech commands and dialogs uttered at 2m away from microphones in 5 different directions. Experimental results show that the proposed method yields $48\%$ classification accuracy while human classifiers give $71\%$ accuracy.

  • PDF

Active Sonar Target/Nontarget Classification Using Real Sea-trial Data (실제 해상 실험 데이터를 이용한 능동소나 표적/비표적 식별)

  • Seok, J.W.
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.10
    • /
    • pp.1637-1645
    • /
    • 2017
  • Target/Nontarget classification can be divided into the study of shape estimation of the target analysing reflected echo signal and of type classification of the target using acoustical features. In active sonar system, the feature vectors are extracted from the signal reflected from the target, and an classification algorithm is applied to determine whether the received signal is a target or not. However, received sonar signals can be distorted in the underwater environments, and the spatio-temporal characteristics of active sonar signals change according to the aspect of the target. In addition, it is very difficult to collect real sea-trial data for research. In this paper, target/non-target classification were performed using real sea-trial data. Feature vectors are extracted using MFCC(Mel-Frequency Cepstral Coefficients), filterbank energy in the Fourier spectrum and wavelet domain. For the performance verification, classification experiments were performed using backpropagation neural network classifiers.

Automatic Text Categorization Using Hybrid Multiple Model Schemes (하이브리드 다중모델 학습기법을 이용한 자동 문서 분류)

  • 명순희;김인철
    • Journal of the Korean Society for information Management
    • /
    • v.19 no.4
    • /
    • pp.35-51
    • /
    • 2002
  • Inductive learning and classification techniques have been employed in various research and applications that organize textual data to solve the problem of information access. In this study, we develop hybrid model combination methods which incorporate the concepts and techniques for multiple modeling algorithms to improve the accuracy of text classification, and conduct experiments to evaluate the performances of proposed schemes. Boosted stacking, one of the extended stacking schemes proposed in this study yields higher accuracy relative to the conventional model combination methods and single classifiers.

Fuzzy Neural Network-Based Noisiness Decision of Road Scene for Lane Detection (퍼지신경망을 이용한 도로 씬의 차선정보의 잡음도 판별)

  • Yi, Un-Kun;Baek, Kwang-Ryul;Kwon, Seok-Geon;Lee, Joon-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.761-764
    • /
    • 2000
  • This paper presents a Fuzzy Neural Network (FNN) system to decide whether or not the right information of lanes can be extracted from gray-level images of road scene. The decision of noisy level of input images has been required because much noises usually deteriorates the performance of feature detection based on image processing and lead to erroneous results. As input parameters to FNN, eight noisiness indexes are constructed from a cumulative distribution function (CDF) and proved the indexes being classifiers of images as the good and the bad corrupted by sources of noise by correlation analysis between input images and the indexes. Considering real-time processing and discrimination efficiency, the proposed FNN is structured by eight input parameters, three fuzzy variables and single output. We conduct much experiments and show that our system has comparable performance in terms of false-positive rates.

  • PDF

Optimization of Domain-Independent Classification Framework for Mood Classification

  • Choi, Sung-Pil;Jung, Yu-Chul;Myaeng, Sung-Hyon
    • Journal of Information Processing Systems
    • /
    • v.3 no.2
    • /
    • pp.73-81
    • /
    • 2007
  • In this paper, we introduce a domain-independent classification framework based on both k-nearest neighbor and Naive Bayesian classification algorithms. The architecture of our system is simple and modularized in that each sub-module of the system could be changed or improved efficiently. Moreover, it provides various feature selection mechanisms to be applied to optimize the general-purpose classifiers for a specific domain. As for the enhanced classification performance, our system provides conditional probability boosting (CPB) mechanism which could be used in various domains. In the mood classification domain, our optimized framework using the CPB algorithm showed 1% of improvement in precision and 2% in recall compared with the baseline.

MOTIF BASED PROTEIN FUNCTION ANALYSIS USING DATA MINING

  • Lee, Bum-Ju;Lee, Heon-Gyu;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.812-815
    • /
    • 2006
  • Proteins are essential agents for controlling, effecting and modulating cellular functions, and proteins with similar sequences have diverged from a common ancestral gene, and have similar structures and functions. Function prediction of unknown proteins remains one of the most challenging problems in bioinformatics. Recently, various computational approaches have been developed for identification of short sequences that are conserved within a family of closely related protein sequence. Protein function is often correlated with highly conserved motifs. Motif is the smallest unit of protein structure and function, and intends to make core part among protein structural and functional components. Therefore, prediction methods using data mining or machine learning have been developed. In this paper, we describe an approach for protein function prediction of motif-based models using data mining. Our work consists of three phrases. We make training and test data set and construct classifier using a training set. Also, through experiments, we evaluate our classifier with other classifiers in point of the accuracy of resulting classification.

  • PDF

Optimal k-Nearest Neighborhood Classifier Using Genetic Algorithm (유전알고리즘을 이용한 최적 k-최근접이웃 분류기)

  • Park, Chong-Sun;Huh, Kyun
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.1
    • /
    • pp.17-27
    • /
    • 2010
  • Feature selection and feature weighting are useful techniques for improving the classification accuracy of k-Nearest Neighbor (k-NN) classifier. The main propose of feature selection and feature weighting is to reduce the number of features, by eliminating irrelevant and redundant features, while simultaneously maintaining or enhancing classification accuracy. In this paper, a novel hybrid approach is proposed for simultaneous feature selection, feature weighting and choice of k in k-NN classifier based on Genetic Algorithm. The results have indicated that the proposed algorithm is quite comparable with and superior to existing classifiers with or without feature selection and feature weighting capability.

A Comparative Study of Image Recognition by Neural Network Classifier and Linear Tree Classifier (신경망 분류기와 선형트리 분류기에 의한 영상인식의 비교연구)

  • Young Tae Park
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.5
    • /
    • pp.141-148
    • /
    • 1994
  • Both the neural network classifier utilizing multi-layer perceptron and the linear tree classifier composed of hierarchically structured linear discriminating functions can form arbitrarily complex decision boundaries in the feature space and have very similar decision making processes. In this paper, a new method for automatically choosing the number of neurons in the hidden layers and for initalzing the connection weights between the layres and its supporting theory are presented by mapping the sequential structure of the linear tree classifier to the parallel structure of the neural networks having one or two hidden layers. Experimental results on the real data obtained from the military ship images show that this method is effective, and that three exists no siginificant difference in the classification acuracy of both classifiers.

  • PDF

Modulation classification for BPSK and QPSK signals over rayleigh fading channel (Payleigh 페이딩 채널에서 BPSK와 QPSK 신호의 변조 분류)

  • 윤동원;한영열
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.4
    • /
    • pp.1019-1026
    • /
    • 1996
  • A modulation type classifier based on statistical moments has been successfully employed to classify PSK signals. Previously, developed Classifiers were analyzed in AWGN channel only. In this paper, a moments-based modulation type classifier to classify BPSK and QPSK signals over Rayleigh fading channel is proposed and analyzed. The moments of received signal are evaluated with the exact distribution of the received signal and a moments-based classifier is proposed. The performance evaluation of the proposed classifier in terms of the misclassification probability for BPSK and QPSK is investigated under Rayleigh fading environment.

  • PDF