• Title/Summary/Keyword: classifier

Search Result 2,184, Processing Time 0.028 seconds

Design of Black Plastics Classifier Using Data Information (데이터 정보를 이용한 흑색 플라스틱 분류기 설계)

  • Park, Sang-Beom;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.569-577
    • /
    • 2018
  • In this paper, with the aid of information which is included within data, preprocessing algorithm-based black plastic classifier is designed. The slope and area of spectrum obtained by using laser induced breakdown spectroscopy(LIBS) are analyzed for each material and its ensuing information is applied as the input data of the proposed classifier. The slope is represented by the rate of change of wavelength and intensity. Also, the area is calculated by the wavelength of the spectrum peak where the material property of chemical elements such as carbon and hydrogen appears. Using informations such as slope and area, input data of the proposed classifier is constructed. In the preprocessing part of the classifier, Principal Component Analysis(PCA) and fuzzy transform are used for dimensional reduction from high dimensional input variables to low dimensional input variables. Characteristic analysis of the materials as well as the processing speed of the classifier is improved. In the condition part, FCM clustering is applied and linear function is used as connection weight in the conclusion part. By means of Particle Swarm Optimization(PSO), parameters such as the number of clusters, fuzzification coefficient and the number of input variables are optimized. To demonstrate the superiority of classification performance, classification rate is compared by using WEKA 3.8 data mining software which contains various classifiers such as Naivebayes, SVM and Multilayer perceptron.

Optimized Polynomial Neural Network Classifier Designed with the Aid of Space Search Simultaneous Tuning Strategy and Data Preprocessing Techniques

  • Huang, Wei;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.911-917
    • /
    • 2017
  • There are generally three folds when developing neural network classifiers. They are as follows: 1) discriminant function; 2) lots of parameters in the design of classifier; and 3) high dimensional training data. Along with this viewpoint, we propose space search optimized polynomial neural network classifier (PNNC) with the aid of data preprocessing technique and simultaneous tuning strategy, which is a balance optimization strategy used in the design of PNNC when running space search optimization. Unlike the conventional probabilistic neural network classifier, the proposed neural network classifier adopts two type of polynomials for developing discriminant functions. The overall optimization of PNNC is realized with the aid of so-called structure optimization and parameter optimization with the use of simultaneous tuning strategy. Space search optimization algorithm is considered as a optimize vehicle to help the implement both structure and parameter optimization in the construction of PNNC. Furthermore, principal component analysis and linear discriminate analysis are selected as the data preprocessing techniques for PNNC. Experimental results show that the proposed neural network classifier obtains better performance in comparison with some other well-known classifiers in terms of accuracy classification rate.

Handwritten Numeral Recognition Using Karhunen-Loeve Transform Based Subspace Classifier and Combined Multiple Novelty Classifiers (Karhunen-Loeve 변환 기반의 부분공간 인식기와 결합된 다중 노벨티 인식기를 이용한 필기체 숫자 인식)

  • 임길택;진성일
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.6
    • /
    • pp.88-98
    • /
    • 1998
  • Subspace classifier is a popular pattern recognition method based on Karhunen-Loeve transform. This classifier describes a high dimensional pattern by using a reduced dimensional subspace. Because of the loss of information induced by dimensionality reduction, however, a subspace classifier sometimes shows unsatisfactory recognition performance to the patterns having quite similar principal components each other. In this paper, we propose the use of multiple novelty neural network classifiers constructed on novelty vectors to adopt minor components usually ignored and present a method of improving recognition performance through combining those with the subspace classifier. We develop the proposed classifier on handwritten numeral database and analyze its properties. Our proposed classifier shows better recognition performance compared with other classifiers, though it requires more weight links.

  • PDF

A comparison of neural networks and maximum likelihood classifier for the classification of land-cover (토지피복분류에 있어 신경망과 최대우도분류기의 비교)

  • Jeon, Hyeong-Seob;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.2 s.16
    • /
    • pp.23-33
    • /
    • 2000
  • On this study, Among the classification methods of land cover using satellite imagery, we compared the classification accuracy of Neural Network Classifier and that of Maximum Likelihood Classifier which has the characteristics of parametric and non-parametric classification method. In the assessment of classification accuracy, we analyzed the classification accuracy about testing area as well as training area that many analysts use generally when assess the classification accuracy. As a result, Neural Network Classifier is superior to Maximum Likelihood Classifier as much as 3% in the classification of training data. When ground reference data is used, we could get poor result from both of classification methods, but we could reach conclusion that the classification result of Neural Network Classifier is superior to the classification result of Maximum Likelihood Classifier as much as 10%.

  • PDF

A Study on the Boiler Efficiency through the puliverizer classifier improvement of New Fossil Power Plant (화력발전소의 미분기 미분도 조정장치 개조을 통한 보일러 효율의 평가에 관한 연구)

  • Kweon, Y.S.;Suh, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.721-725
    • /
    • 2001
  • The main reason for applying pulverizer classifier-rotary type in fossil power plant is boiler high efficiency and energy saving movement in the government. This study intends to analyze the boiler efficiency through the pulverizer classifier-rotary type improvement in thermal power plant and makes its comparison to that of the used fixed type.

  • PDF

The Design of GA-based TSK Fuzzy Classifier and Its application (GA기반 TSK 퍼지 분류기의 설계 및 응용)

  • 곽근창;김승석;유정웅;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.233-236
    • /
    • 2001
  • In this paper, we propose a TSK-type fuzzy classifier using PCA(Principal Component Analysis), FCM(Fuzzy C-Means) clustering and hybrid GA(genetic algorithm). First, input data is transformed to reduce correlation among the data components by PCA. FCM clustering is applied to obtain a initial TSK-type fuzzy classifier. Parameter identification is performed by AGA(Adaptive Genetic Algorithm) and RLSE(Recursive Least Square Estimate). we applied the proposed method to Iris data classification problems and obtained a better performance than previous works.

  • PDF

Study About A Efficient Total Recognition System of Hand written and Printed Numerals (인쇄체 숫자와 필기체 숫자의 효율적인 통합인식 시스템에 관한 연구)

  • 엄상수;김종석;홍연찬
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.609-615
    • /
    • 1998
  • In this paper, we propose efficient total recognition system of handwritten and printed numerals for enhancing the classification time. The proposed system consist two step neuroclassifier: Printed numerals classifier and Handwritten numerals classifier. The performance of the propose classifier was tested on 5000 handwritten numerals database of NIST and 100 printed numerals database. In case of handwritten classifier, the overall classification times were 11 second. And in case of proposed system, the overall classification times were reduced by...

  • PDF

Classifier Selection using Feature Space Attributes in Local Region (국부적 영역에서의 특징 공간 속성을 이용한 다중 인식기 선택)

  • Shin Dong-Kuk;Song Hye-Jeong;Kim Baeksop
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1684-1690
    • /
    • 2004
  • This paper presents a method for classifier selection that uses distribution information of the training samples in a small region surrounding a sample. The conventional DCS-LA(Dynamic Classifier Selection - Local Accuracy) selects a classifier dynamically by comparing the local accuracy of each classifier at the test time, which inevitably requires long classification time. On the other hand, in the proposed approach, the best classifier in a local region is stored in the FSA(Feature Space Attribute) table during the training time, and the test is done by just referring to the table. Therefore, this approach enables fast classification because classification is not needed during test. Two feature space attributes are used entropy and density of k training samples around each sample. Each sample in the feature space is mapped into a point in the attribute space made by two attributes. The attribute space is divided into regular rectangular cells in which the local accuracy of each classifier is appended. The cells with associated local accuracy comprise the FSA table. During test, when a test sample is applied, the cell to which the test sample belongs is determined first by calculating the two attributes, and then, the most accurate classifier is chosen from the FSA table. To show the effectiveness of the proposed algorithm, it is compared with the conventional DCS -LA using the Elena database. The experiments show that the accuracy of the proposed algorithm is almost same as DCS-LA, but the classification time is about four times faster than that.

A Design of Fuzzy Classifier with Hierarchical Structure (계층적 구조를 가진 퍼지 패턴 분류기 설계)

  • Ahn, Tae-Chon;Roh, Seok-Beom;Kim, Yong Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.355-359
    • /
    • 2014
  • In this paper, we proposed the new fuzzy pattern classifier which combines several fuzzy models with simple consequent parts hierarchically. The basic component of the proposed fuzzy pattern classifier with hierarchical structure is a fuzzy model with simple consequent part so that the complexity of the proposed fuzzy pattern classifier is not high. In order to analyze and divide the input space, we use Fuzzy C-Means clustering algorithm. In addition, we exploit Conditional Fuzzy C-Means clustering algorithm to analyze the sub space which is divided by Fuzzy C-Means clustering algorithm. At each clustered region, we apply a fuzzy model with simple consequent part and build the fuzzy pattern classifier with hierarchical structure. Because of the hierarchical structure of the proposed pattern classifier, the data distribution of the input space can be analyzed in the macroscopic point of view and the microscopic point of view. Finally, in order to evaluate the classification ability of the proposed pattern classifier, the machine learning data sets are used.

A Study on Modulation Classification of PSK Signals Based on Statistical Moments (통계적 모먼트에 의한 PSK 신호의 변조분류에 관한 연구)

  • 이원철;한영열
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.6
    • /
    • pp.1004-1015
    • /
    • 1994
  • Modulation type classifier based on statistical moments has been successfully employed to classify PSK signals. Previously, the classifier developed utilizes the statistical moment of samples of the received signal phase, which may be difficult to extract from received signal. In this paper we propose a new moments-based classifier to classify PSK signals by using the moments of the demodulated signal for PSK. THe demodulated signal can be easily extracted from the conventional demodulation of PSK. The evaluation of the performance of the proposed classifier for PSK signals has been investigated in additive white Gaussian noise environment using the exact distribution of the demodulated signal. The performances of classifier in terms of probability of misclassification were evaluated. We found that the coherent system classifier gave 4dB improvement for BPSK and 3dB for QPSK over noncoherent system classifier, when the probability of misclassification is 10 and m equals to 4.

  • PDF