• Title/Summary/Keyword: classification tree analysis

Search Result 413, Processing Time 0.026 seconds

A Comparative Study of Medical Data Classification Methods Based on Decision Tree and System Reconstruction Analysis

  • Tang, Tzung-I;Zheng, Gang;Huang, Yalou;Shu, Guangfu;Wang, Pengtao
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.102-108
    • /
    • 2005
  • This paper studies medical data classification methods, comparing decision tree and system reconstruction analysis as applied to heart disease medical data mining. The data we study is collected from patients with coronary heart disease. It has 1,723 records of 71 attributes each. We use the system-reconstruction method to weight it. We use decision tree algorithms, such as induction of decision trees (ID3), classification and regression tree (C4.5), classification and regression tree (CART), Chi-square automatic interaction detector (CHAID), and exhausted CHAID. We use the results to compare the correction rate, leaf number, and tree depth of different decision-tree algorithms. According to the experiments, we know that weighted data can improve the correction rate of coronary heart disease data but has little effect on the tree depth and leaf number.

Note on classification and regression tree analysis (분류와 회귀나무분석에 관한 소고)

  • 임용빈;오만숙
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.1
    • /
    • pp.152-161
    • /
    • 2002
  • The analysis of large data sets with hundreds of thousands observations and thousands of independent variables is a formidable computational task. A less parametric method, capable of identifying important independent variables and their interactions, is a tree structured approach to regression and classification. It gives a graphical and often illuminating way of looking at data in classification and regression problems. In this paper, we have reviewed and summarized tile methodology used to construct a tree, multiple trees and the sequential strategy for identifying active compounds in large chemical databases.

Two-Stage Decision Tree Analysis for Diagnosis of Personal Sasang Constitution Medicine Type (사상체질 판별을 위한 2단계 의사결정 나무 분석)

  • Jin, Hee-Jeong;Lee, Hae-Jung;Kim, Myoung-Geun;Kim, Hong-Gie;Kim, Jong-Yeol
    • Journal of Sasang Constitutional Medicine
    • /
    • v.22 no.3
    • /
    • pp.87-97
    • /
    • 2010
  • 1. Objectives: In SCM, a personal Sasang constitution must be determined accurately before any Sasang treatment. The purpose of this study is to develop an objective method for classification of Sasang constitution. 2. Methods: We collected samples from 5 centers where SCM is practiced, and applied two-stage decision tree analysis on these samples. We recruited samples from 5 centers. The collected data were from subjects whose response to herbal medicine was confirmed according to Sasang constitution. 3. Results: The two-stage decision tree model shows higher classification power than a simple decision tree model. This study also suggests that gender must be considered in the first stage to improve the accuracy of classification. 4. Conclusions: We identified important factors for classifying Sasang constitutions through two-stage decision tree analysis. The two-stage decision tree model shows higher classification power than a simple decision tree model.

A Study on the Classification of Variables Affecting Smartphone Addiction in Decision Tree Environment Using Python Program

  • Kim, Seung-Jae
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.68-80
    • /
    • 2022
  • Since the launch of AI, technology development to implement complete and sophisticated AI functions has continued. In efforts to develop technologies for complete automation, Machine Learning techniques and deep learning techniques are mainly used. These techniques deal with supervised learning, unsupervised learning, and reinforcement learning as internal technical elements, and use the Big-data Analysis method again to set the cornerstone for decision-making. In addition, established decision-making is being improved through subsequent repetition and renewal of decision-making standards. In other words, big data analysis, which enables data classification and recognition/recognition, is important enough to be called a key technical element of AI function. Therefore, big data analysis itself is important and requires sophisticated analysis. In this study, among various tools that can analyze big data, we will use a Python program to find out what variables can affect addiction according to smartphone use in a decision tree environment. We the Python program checks whether data classification by decision tree shows the same performance as other tools, and sees if it can give reliability to decision-making about the addictiveness of smartphone use. Through the results of this study, it can be seen that there is no problem in performing big data analysis using any of the various statistical tools such as Python and R when analyzing big data.

A Study of Pathogenesis Classification using Decision Tree Method (의사결정나무법을 이이용한 병인(病因)분류에 관한 연구)

  • Lee, Hyuk-Jae;Kim, Min-Yong;Oh, Hwan-Sup;Park, Young-Bae
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.12 no.2
    • /
    • pp.27-40
    • /
    • 2008
  • Background : In spite of the predominant of the theory of Pathogenesis, the method of Pathogenesis classification is depending on the doctor's clinical trials because od the lack of the objective test criteria. Methods and Results : This study is trying to improve the objectiveness of classification using a new statistical method, decision tree. Decision tree method -a classification technique in the statistical analysis- was used to analyze the result of pathogenesis questionnaire instead of using discriminant analysis. As a result, 10 among 38 pathogenesis questionnaire was selected as important questions and 12 terminal nodes was built to classify the pathogenesis. Conclusions : Using only 10 questions shown in the result of decision tree, we can classify and interpret the pathogenesis easily and effectively.

  • PDF

A study of constitution diagnosis using decision tree method (의사결정나무법을 이용한 체질진단에 관한 연구)

  • Lee, Yong-Seop;Park, Seong-Sik;Park, Eun-Kyung
    • Journal of Sasang Constitutional Medicine
    • /
    • v.13 no.2
    • /
    • pp.144-155
    • /
    • 2001
  • By the increasing concern about Sasang Constitution Medicine, its practical use is considered very important in disease prevention and medical treatment. However, the method of constitution classification is depending on the doctor's clinical trials because of the lack of the objective test criteria. This study is trying to improve the objectiveness of diagnosis using a new statistical method, decision tree. Decision tree method-a classification technique in the statistical analysis- was used to analyze the result of QSCCII instead of using discriminant analysis. As a result, 16 among 121 QSCCII questions was selected as important questions and 21 terminal nodes was built to classify the constitution. Using only 16 questions shown in the result of decision tree, we can diagnose and interpret the constitution easily and effectively.

  • PDF

Prediction Model for the Risk of Scapular Winging in Young Women Based on the Decision Tree

  • Gwak, Gyeong-tae;Ahn, Sun-hee;Kim, Jun-hee;Weon, Young-soo;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.27 no.2
    • /
    • pp.140-148
    • /
    • 2020
  • Background: Scapular winging (SW) could be caused by tightness or weakness of the periscapular muscles. Although data mining techniques are useful in classifying or predicting risk of musculoskeletal disorder, predictive models for risk of musculoskeletal disorder using the results of clinical test or quantitative data are scarce. Objects: This study aimed to (1) investigate the difference between young women with and without SW, (2) establish a predictive model for presence of SW, and (3) determine the cutoff value of each variable for predicting the risk of SW using the decision tree method. Methods: Fifty young female subjects participated in this study. To classify the presence of SW as the outcome variable, scapular protractor strength, elbow flexor strength, shoulder internal rotation, and whether the scapula is in the dominant or nondominant side were determined. Results: The classification tree selected scapular protractor strength, shoulder internal rotation range of motion, and whether the scapula is in the dominant or nondominant side as predictor variables. The classification tree model correctly classified 78.79% (p = 0.02) of the training data set. The accuracy obtained by the classification tree on the test data set was 82.35% (p = 0.04). Conclusion: The classification tree showed acceptable accuracy (82.35%) and high specificity (95.65%) but low sensitivity (54.55%). Based on the predictive model in this study, we suggested that 20% of body weight in scapular protractor strength is a meaningful cutoff value for presence of SW.

Tree-structured Classification based on Variable Splitting

  • Ahn, Sung-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.1
    • /
    • pp.74-88
    • /
    • 1995
  • This article introduces a unified method of choosing the most explanatory and significant multiway partitions for classification tree design and analysis. The method is derived on the impurity reduction (IR) measure of divergence, which is proposed to extend the proportional-reduction-in-error (PRE) measure in the decision-theory context. For the method derivation, the IR measure is analyzed to characterize its statistical properties which are used to consistently handle the subjects of feature formation, feature selection, and feature deletion required in the associated classification tree construction. A numerical example is considered to illustrate the proposed approach.

  • PDF

THE PERFORMANCE OF THE BINARY TREE CLASSIFIER AND DATA CHARACTERISTICS

  • Park, Jeong-sun
    • Management Science and Financial Engineering
    • /
    • v.3 no.1
    • /
    • pp.39-56
    • /
    • 1997
  • This paper applies the binary tree classifier and discriminant analysis methods to predicting failures of banks and insurance companies. In this study, discriminant analysis is generally better than the binary tree classifier in the classification of bank defaults; the binary tree is generally better than discriminant analysis in the classification of insurance company defaults. This situation can be explained that the performance of a classifier depends on the characteristics of the data. If the data are dispersed appropriately for the classifier, the classifier will show a good performance. Otherwise, it may show a poor performance. The two data sets (bank and insurance) are analyzed to explain the better performance of the binary tree in insurance and the worse performance in bank; the better performance of discriminant analysis in bank and the worse performance in insurance.

  • PDF

Diagnostic Classification Scheme in Iranian Breast Cancer Patients using a Decision Tree

  • Malehi, Amal Saki
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5593-5596
    • /
    • 2014
  • Background: The objective of this study was to determine a diagnostic classification scheme using a decision tree based model. Materials and Methods: The study was conducted as a retrospective case-control study in Imam Khomeini hospital in Tehran during 2001 to 2009. Data, including demographic and clinical-pathological characteristics, were uniformly collected from 624 females, 312 of them were referred with positive diagnosis of breast cancer (cases) and 312 healthy women (controls). The decision tree was implemented to develop a diagnostic classification scheme using CART 6.0 Software. The AUC (area under curve), was measured as the overall performance of diagnostic classification of the decision tree. Results: Five variables as main risk factors of breast cancer and six subgroups as high risk were identified. The results indicated that increasing age, low age at menarche, single and divorced statues, irregular menarche pattern and family history of breast cancer are the important diagnostic factors in Iranian breast cancer patients. The sensitivity and specificity of the analysis were 66% and 86.9% respectively. The high AUC (0.82) also showed an excellent classification and diagnostic performance of the model. Conclusions: Decision tree based model appears to be suitable for identifying risk factors and high or low risk subgroups. It can also assists clinicians in making a decision, since it can identify underlying prognostic relationships and understanding the model is very explicit.