코로나19 팬데믹의 장기화로 인해 실내 생활에 지쳐가는 사람들이 우울감, 무기력증 등을 해소하기 위해 근거리의 산과 국립공원을 찾는 빈도가 폭발적으로 증가하였다. 자연으로 나온 수많은 사람들이 오가는 걸음을 멈추고 숨을 돌리며 쉬어가는 장소가 있는데 바로 약수터이다. 산이나 국립공원이 아니더라도 근린공원 또는 산책로에서도 간간이 찾아볼 수 있는 약수터는 수도권에만 약 6백여개가 위치해 있다. 하지만 불규칙적이고 수작업으로 수행되는 수질검사로 인해 사람들은 실시간으로 검사 결과를 알 수 없는 상태에서 약수를 음용하게 된다. 따라서 본 연구에서는 약수터 수질에 영향을 미치는 요인을 탐색하고 다양한 곳에 흩어져 있는 데이터를 수집하여 실시간으로 약수터 수질을 예측할 수 있는 모델을 개발하고자 한다. 데이터 수집의 한계로 인해 서울과 경기로 지역을 한정한 후 데이터 관리가 잘 이루어지고 있는 18개 시의 약 300여개 약수터를 대상으로 2015~2020년의 수질 검사 데이터를 확보하였다. 약수터 수질 적합 여부에 영향을 미칠 것으로 여겨지는 다양한 요인들 중 두 차례의 검토를 거쳐 총 10개의 요인을 최종 선별하였다. 최근 주목받고 있는 자동화 머신러닝 기술인 AutoML 기법을 활용하여 20여가지의 머신러닝 기법들 중 예측 성능 기준 상위 5개의 모델을 도출하였으며 그 중 catboost 모델이 75.26%의 예측 분류 정확도로 가장 높은 성능을 가지고 있음을 확인하였다. 추가로 SHAP 기법을 통해 분석에 사용한 변인들이 예측에 미치는 절대적인 영향력을 살펴본 결과 직전 수질 검사에서 부적합 판정을 받았는지 여부가 가장 중요한 요인이었으며 그 외 평균 기온, 과거 연속 2번 수질 부적합 판정 기록 유무, 수질 검사 당일 기온, 약수터 고도 등이 수질 부적합 여부에 영향을 미치고 있음을 확인하였다.
텍스트를 바탕으로 한 차원 기반 감성 분석(Aspect-Based Sentiment Analysis)은 다양한 산업에서 유용성을 주목을 받고 있다. 기존의 차원 기반 감성 분석에서는 타깃(Target) 혹은 차원(Aspect)만을 고려하여 감성을 분석하는 연구가 대다수였다. 그러나 동일한 타깃 혹은 차원이더라도 감성이 나뉘는 경우, 또는 타깃이 없지만 감성은 존재하는 경우 분석 결과가 정확하지 않다는 한계가 존재한다. 이러한 문제를 해결하기 위한 방법으로 차원과 타깃을 모두 고려한 감성 분석(Target-Aspect-Sentiment Detection, 이하 TASD) 모델이 제안되었다. 그럼에도 불구하고, TASD 기존 모델의 경우 구(Phrase) 간의 관계인 지역적인 문맥을 잘 포착하지 못하고 초기 학습 속도가 느리다는 문제가 있었다. 본 연구는 TASD 분야 내 기존 모델의 한계를 보완하여 분석 성능을 높이고자 하였다. 이러한 연구 목적을 달성하기 위해 기존 모델에 합성곱(Convolution Neural Network) 계층을 더하여 차원-감성 분류 시 보조 손실(Auxiliary loss)을 추가로 사용하였다. 즉, 학습 시에는 합성곱 계층을 통해 지역적인 문맥을 좀 더 잘 포착하도록 하였으며, 학습 후에는 기존 방식대로 차원-감성 분석을 하도록 모델을 설계하였다. 본 모델의 성능을 평가하기 위해 공개 데이터 집합인 SemEval-2015, SemEval-2016을 사용하였으며, 기존 모델 대비 F1 점수가 최대 55% 증가했다. 특히 기존 모델보다 배치(Batch), 에폭(Epoch)이 적을 때 효과적으로 학습한다는 것을 확인할 수 있었다. 본 연구에서 제시된 모델로 더욱 더 세밀한 차원 기반 감성 분석이 가능하다는 점에서, 기업에서 상품 개발 및 마케팅 전략 수립 등에 다양하게 활용할 수 있으며 소비자의 효율적인 구매 의사결정을 도와줄 수 있을 것으로 보인다.
윈도우 영상은 흔히 컴퓨터에서 응용프로그램을 실행하였을 때, 모니터를 통해 출력되는 화면을 의미하여, 웹페이지, 동영상 플레이어 및 여러 가지 응용프로그램을 모두 포함한다. 웹페이지는 다른 어플리케이션에 비해 다양한 종류의 정보를 다양한 형태로 전달한다. 이러한 웹페이지와 같은 윈도우 영상은 카메라로부터 획득할 수 있는 자연영상과 달리 텍스트, 로고, 아이콘 및 하위 영상과 같은 여러 가지 요소들을 포함하고 있고, 각 요소들은 서로 다른 형식의 정보를 사용자에게 전달한다. 그러나 텍스트와 영상은 정보가 다른 형태로 제공되기 때문에, 엄연히 다른 특성을 가지고 있는 요소들을 지역적으로 분리할 필요성이 있다. 본 논문에서는 윈도우 영상을 지역적인 특성에 따라 다수의 블록으로 분할한 후, 분할된 각 영역을 배경, 텍스트, 하위영상으로 분류하였다. 이러한 분류기법을 통해 분류된 하위 영상은 3D입체영상 변환, 영상 검색, 영상 브라우징등과 같은 응용을 가질 수 있다. 영상을 분류하는 방법에는 여러 가지가 존재할 수 있으나, 본 논문에서는 기계학습 기반의 알고리즘이 하위 영상 검출에도 좋은 접근법이 될 수 있음을 증명하기 위해 AdaBoost를 이용하였고, 실험결과로부터 93.4%의 검출률, 13%의 거짓 긍정률을 보임으로서, 이를 입증하였다.
스마트 기기 사용자의 성별 정보는 성공적인 개인화 서비스를 위해 중요하며, 스마트 기기로부터 수집된 멀티 모달 로그 데이터는 사용자의 성별 예측에 중요한 근거가 된다. 하지만 각 멀티 모달 데이터의 특성에 따라 다른 방식으로 성별 예측을 수행해야 한다. 따라서 본 연구에서는 스마트 기기로부터 발생한 로그 데이터 중 텍스트, 어플리케이션, 가속도 데이터에 기반한 각기 다른 분류기의 예측 결과를 다수결 방식으로 앙상블하여 최종 성별을 예측하는 기법을 제안한다. 텍스트 데이터를 이용한 분류기는 데이터 유출에 의한 사생활 침해 문제를 최소화하기 위해 웹 문서로부터 각 성별의 특징적 단어 집합을 도출하고 이를 기기로 전송하여 사용자의 기기 내에서 성별 분류를 수행한다. 어플리케이션 데이터에 기반한 분류기는 사용자가 실행한 어플리케이션들에 성별을 부여하고 높은 비율을 차지하는 성별로 사용자의 성별을 예측한다. 가속도 기반 분류기는 성별에 따른 사용자의 가속도 데이터 인스턴스를 학습한 SVM 모델을 사용하여 주어진 성별을 분류한다. 자체 제작한 안드로이드 어플리케이션을 통해 수집된 실제 스마트 기기 로그 데이터를 사용하여 제안하는 기법을 평가하였으며 그 결과 높은 예측 성능을 보였다.
최근의 영상 처리 분야는 딥러닝 기법들의 성능이 입증됨에 따라 다양한 분야에서 이와 같은 기법들을 활용해 영상에 대한 분류, 분석, 검출 등을 수행하려는 시도가 활발하다. 그중에서도 의료 진단 보조 역할을 할 수 있는 의료 영상 분석 소프트웨어에 대한 기대가 증가하고 있는데, 본 연구에서는 데이터 셋이 방대하고 판단에 시간이 오래 걸리는 캡슐내시경 영상에 주목하였다. 본 논문의 목적은 캡슐내시경 영상의 판독에서 모든 환자에 대해 공통으로 수행되고, 판독하는 데 많은 시간을 차지하는 위장관 랜드마크를 구별하고 위장관 교차점을 추정하는 것이다. 이를 위해, 위장관 랜드마크를 식별할 수 있는 CNN 학습 모델을 설계하였으며, 이를 이용하여 결괏값을 필터링해 위장관 교차점을 추정하였다. 무작위로 환자 데이터를 샘플링한 모델을 이용해서 나온 결과를 필터링 후에 위장관 교차점을 추정하였을 때, 88% 환자는 위장에서 소장으로 변화하는 위장관 교차점(유문판) 의심 구역 안에 들어왔으며, 소장에서 대장으로 변화하는 위장관 교차점(회맹판)의 경우 100% 환자가 위장관 교차점 의심 구역 안에 들어온 것을 확인할 수 있었다. 100프레임 범위로 위장관 교차점 의심 구역을 찾을 수 있었으며, 판독자가 초당 10프레임의 속도로 판독을 진행한다면 10초안에 위장관 교차점을 찾아낼 수 있다.
201 6년 9월에 발생한 경주지진원 구역에 대한 정밀 지질구조 규명을 위해 MT 탐사를 적용하였다. 경주지역의 MT 측정자료는 조사지역 인근의 지하철, 전력선, 공장, 주택, 농경지에서 발생된 전기적 잡음과 철도, 도로에서의 차량잡음 등으로 인해 측정자료 왜곡이 심하게 발생되었다. 이 연구에서는 고속철도 및 고속도로와 인접한 4개소의 MT 탐사자료에 기계학습 기법을 적용하여 차량잡음이 포함된 시계열을 분류하였다. 고속열차 잡음이 포함된 시계열에 대해서는 확률적 경사 하강법, 서포트 벡터 머신과 랜덤 포레스트 3가지의 분류모델을 적용하여 그 결과를 비교하였다. 대형트럭 잡음이 포함된 시계열 자료에 대해서는 Hx 성분, Hy 성분과 Hx & Hy 합성성분 크기에 대한 3가지의 샘플 자료를 준비하였으며 랜덤 포레스트 분류모델을 구성하여 그 성능을 평가하였다. 마지막으로 차량잡음 제거 효과 분석을 위하여 차량잡음 제거 전후의 시계열, 진폭 스펙트럼과 겉보기비저항 곡선을 비교하였으며, 이를 통해 차량잡음이 영향을 미치는 주파수 대역과 차량잡음 제거 시 발생될 수 있는 문제점에 대해 고찰하였다.
본 연구는 놀이의 본질을 설명하는 놀이속성어를 추출하고, 이러한 속성이 현재 사용되는 어린이놀이시설물과의연관성을 지니는지를 확인하는 연구이다. 놀이시설물에 반영된 놀이속성을 조사하여 부족한 점을 보완함으로써 어린이에게 균형 잡힌 놀이 환경을 제공할 수 있다고 생각하기 때문이다. 이에 본 연구에서는 문헌조사 및 분석을 통해 속성어를 추출하고, 추출된 속성어에 대하여 전문가 설문을 실시하였다. 놀이를 설명하는 키워드는 참고문헌과 신문기사 등에서 추출하고 압축하여 놀이속성어로 규정하였고, 6개의 대분류와 26개의 중분류로 분류하였다. 이 내용을 바탕으로 실시한 전문가 인식조사에서 주요 놀이속성어의 중요도는 소통(0.268%) > 상상력(0.201%) > 정서(0.190%) > 발달(0.167%) > 학습(0.108%) > 지능(0.067%)의 순서로 나타났다. 전문가들은 '소통'과 '상상력' 등을 놀이에서 가장 중요한 요소로 인지하고 있었다. 도출된 내용을 바탕으로 놀이시설물과 연관되는 각각의 놀이속성어를 구분하고, 서울시 114개소 어린이 공원에 설치된 놀이시설물 현황을 파악하였다. 서울시 어린이공원에 설치된 놀이시설물에는 놀이속성어 중 '발달'을 위주로 한 신체발달 놀이시설물이 높은 빈도로 모든 어린이공원에 반영되었으며, 전문가들이 중요한 요소로 나타난 '소통'과 '상상력' 등 인지관련 놀이시설물은 실제 충분히 반영되어 있지 않아 적극적으로 도입할 필요성이 있는 것으로 판단되었다. 본 연구를 통해 현재 이용되고 있는 어린이 공원의 부족한 놀이시설물을 파악하고, 놀이의 기능에 대한 의문을 제기함으로써 향후 개선방향을 제안하고자 하였다.
전 세계의 인구가 1인 평균 2대의 모바일 디바이스를 소지하는 시대가 다가오고 있으며 무선 네트워크 시장이 점차 확장되고 있다. 모바일 기기의 활용도가 높아짐에 따라서 와이파이(Wi-fi, Wireless Fidelity=Wireless LAN)가 선호하는 네트워크로 떠오르고 있다. 와이파이를 기반으로 공공기관, 의료, 교육러닝 및 콘텐츠, 제조, 리테일 등 다양한 영역에서 새로운 가치를 창출해가고 있으며, 글로벌 네트워크가 구축되어 복합적인 서비스를 제공하고 있다. 하지만 차세대 무선 네트워크 환경에서 무선 디바이스 식별자 취약, MAC 위조를 통한 네트워크 자원의 불법 이용, 무선 인증키 크래킹, 미허가 AP/디바이스에 대한 공격과 같은 취약점이 존재하고 있다. 또한 인증 고도화 및 안전한 고속 보안 접속과 같은 보안기술연구가 거의 진행되고 있지 않다. 그러므로 본 논문에서는 차세대 무선 네트워크 환경의 메시지 보호를 위한 디바이스 식별과 콘텐츠 분류 및 저장 프로토콜을 설계하여 안전한 통신 시스템을 설계한다. 제안한 프로토콜은 기존의 무선 네트워크 환경에서 발생하는 보안취약점에 관하여 안전성을 분석하였고 기존의 무선 네트워크 환경의 암호기법을 비교분석하여 보안성을 분석하였다. 기존의 암호시스템 WPA2-PSK보다는 대략 0.72배 느리지만, 보안성에서는 안전성을 강화되었다.
정보보안 분야에 대한 사회적 이슈가 고취되고, 인력수요전망이 매우 높아지고 있다. 이에 본 연구는 컴퓨터 및 네트워크 시스템 등 정보보안 분야에서 관련 직무에 종사하고 있는 실무자들로부터 정보보안에 필요한 지식을 설문조사하였다. 설문자료와 NICE에서 제시한 정보보호 직무체계 그리고 NCS 그리고 KISA에서 분류한 IT기술과 보안영역분류체계와의 연관성을 분석하였다. 분석한 자료를 기반으로 정보보안 분야에서 직무를 수행할 수 있는 전문 인력 양성을 위한 교육과정을 제안한다. 제안하는 교육과정은 2년제, 3년제 그리고 4년제 학제에 각각 적용할 수 있도록 하였다. 제안하는 교육과정은 정보보안 직무체계에서 종사하기를 원하는 많은 인력들이 주어진 학년기간 동안에 반드시 익혀야 될 과정들을 제안하였다. 제안한 각 교육단계는 관련분야와 밀접한 연계성을 갖고 반드시 필요한 교육이 실천될 수 있도록 각 교과목에 세부 지침을 명시하였다. 제안한 교육과정은 반드시 필요하고 기본이 되는 이론교육은 물론 이론과 함께 실시되어야 하는 실무교육을 함께 병행하도록 하여 자칫 이론중심의 교육이거나 단순한 명령어만을 익히는 실습에서 벗어나서 실무와 연계될 수 있는 다양한 시나리오기반의 해킹과 보안 방어 대응책에 대한 교육이 함께 이루어지도록 설계하였다. 이는 스펙이 아닌 직무능력을 갖추어 관련 자격증을 취득하는데 도움이 될 수 있을 뿐만 아니라 차세대 융합형 정보보안 전문인력 양성에 도움이 될 수 있기를 기대한다.
현재 ERP와 CRM은 대부분 전통적인 기능적 수행에만 초점이 맞추어져 있다. 그러나 최근의 경영환경은 인터넷(Internet)과 이를 기반으로 하는 전자상거래의 비약적 발전에 기인하여 시장의 변화를 가져왔으며, 이는 대부분 e-비즈니스화 되어 가고 있으며, 이를 추진하면서 제휴기관과의 관계증진, 고객관계의 혁신적 개선은 물론 조직내부의 업무프로세스의 획기적 개선을 통한 경쟁력 강화를 적극적으로 전개하고 있다. CRM(Customer Relationship Management)은 기업이 획득한 고객을 지속적으로 유지하고, 기업에 대한 고객의 가치를 증진시키기 위해 기업과 고객간의 상호 이익적 관계를 형성 유지 강화하려는 기업의 일련의 마케팅과정으로 다양하고도 수많은 고객들의 정보를 기반으로 수행되기 때문에 고객 정보를 파악할 수 있는 시스템 기반을 필요로 하며, 생산과 상품의 전달경로, 마케팅, 그리고 의사결정 등의 경영 카테고리와 연관되어 있다. 한편 ERP는 SCM과 CRM 및 SEM(Strategic Enterprise Management)등으로 기능을 확대해감에 따라 21세기의 ERP는 e-비즈니스의 전략적 도구로 발전해 갈 것이다. 본 논문에서는 이를 위한 중재 도구를 제시함으로써 고객에게 더욱 더 효율적이고 고 부가가치 있는 의미 있는 데이터들의 통계적 기계 학습법을 통해 CRM의 기능들을 효율적으로 분류할 수 있도록 한다. 또한 시스템 특징으로는 기존에 수작업으로 이루어지던 파일의 분류 작업을 기계 학습법을 통한 에이전트가 자동으로 수행함으로써 사용자가 좀 더 효율적으로 작업을 수행 할 수 있도록 한 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.