• 제목/요약/키워드: classification learning

검색결과 3,347건 처리시간 0.034초

학습자 중심 체육교육에 대한 체육교사의 의미구성과 실천 (Physical Education Teachers' Meaning Construction and Practice of Learner-centered Physical Education)

  • 김승용
    • 산업융합연구
    • /
    • 제22권1호
    • /
    • pp.95-103
    • /
    • 2024
  • 본 연구는 학습자 중심 체육교육에 대한 체육교사들의 인식과 신념을 살펴보고 체육교육과정을 실천하는 현장 속에서 나타나는 체육교사들의 이야기에 대해 질적 탐구를 하고자 하는데 그 목적이 있다. 연구방법은 질적 연구로서 반구조화된 질문지를 통해 개별 면담, 집단 면담 및 메타포 기록을 통해 자료의 수집 및 기록이 이루어졌으며 영역분석 및 분류분석의 방법을 통해 자료가 분석되었다. 연구는 학습자 중심 체육교육에 대한 체육교사의 의미구성과 관련하여 '학습자 집중', '전체적 개발', 학습 평가'로 나눠서 결과를 도출할 수 있었다. 그리고 학습자 중심 체육교육의 실천 및 그 한계에 대해 제시하였다. 결론적으로 학습자 중심 체육교육의 전체적인 발달에는 신체적, 인지적, 사회적, 정서적 측면을 다루는 것이 포함된다. 이러한 접근 방식은 학생의 발전을 측정할 뿐만 아니라 개인으로서의 발전에도 적극적으로 기여할 수 있을 것이라 판단된다.

수어 번역을 위한 3차원 컨볼루션 비전 트랜스포머 (Three-Dimensional Convolutional Vision Transformer for Sign Language Translation)

  • 성호렬;조현중
    • 정보처리학회 논문지
    • /
    • 제13권3호
    • /
    • pp.140-147
    • /
    • 2024
  • 한국에서 청각장애인은 지체장애인에 이어 두 번째로 많은 등록 장애인 그룹이다. 하지만 수어 기계 번역은 시장 성장성이 작고, 엄밀하게 주석처리가 된 데이터 세트가 부족해 발전 속도가 더디다. 한편, 최근 컴퓨터 비전과 패턴 인식 분야에서 트랜스포머를 사용한 모델이 많이 제안되고 있는데, 트랜스포머를 이용한 모델은 동작 인식, 비디오 분류 등의 분야에서 높은 성능을 보여오고 있다. 이에 따라 수어 기계 번역 분야에서도 트랜스포머를 도입하여 성능을 개선하려는 시도들이 제안되고 있다. 본 논문에서는 수어 번역을 위한 인식 부분을 트랜스포머와 3D-CNN을 융합한 3D-CvT를 제안한다. 또, PHOENIX-Wether-2014T [1]를 이용한 실험을 통해 제안 모델은 기존 모델보다 적은 연산량으로도 비슷한 번역 성능을 보이는 효율적인 모델임을 실험적으로 증명하였다.

디퓨전 오토인코더의 시선 조작 데이터 증강을 통한 시선 추적 (Gaze-Manipulated Data Augmentation for Gaze Estimation With Diffusion Autoencoders)

  • 문강륜;김영한;박용준;김용규
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제30권3호
    • /
    • pp.51-59
    • /
    • 2024
  • 시선 벡터 정답값을 갖는 대규모 데이터의 수집은 시선 추적 분야에서 많은 비용을 필요로 한다. 본 논문에서는 원본 사진의 시선을 수정하는 데이터 증강 기법을 사용하여 제한된 개수의 시선 정답값이 주어진 상황에서 시선 추적 모델의 정확도를 향상시키는 방법을 제안한다. 시선 구간 다중 클래스 분류를 보조 작업으로 학습하고, 디퓨전 오토인코더의 잠재 변수를 조정하여 원본 사진의 시선을 편집한 사진을 생성한다. 기존의 얼굴 속성 편집과 달리, 우리는 이진 속성이 아닌 시선 벡터의 피치와 요를 지정한 범주 내로 변경하며, 편집된 사진을 시선 추적 모델의 증강된 학습 데이터로 활용한다. 시선 정답값이 5만 개 이하일 때 준지도 학습에서의 시선 추적 모델의 정확도 향상은 제안한 데이터 증강 기법의 효과를 입증한다.

음성-영상 특징 추출 멀티모달 모델을 이용한 감정 인식 모델 개발 (Development of Emotion Recognition Model Using Audio-video Feature Extraction Multimodal Model)

  • 김종구;권장우
    • 융합신호처리학회논문지
    • /
    • 제24권4호
    • /
    • pp.221-228
    • /
    • 2023
  • 감정으로 인해 생기는 신체적 정신적인 변화는 운전이나 학습 행동 등 다양한 행동에 영향을 미칠 수 있다. 따라서 이러한 감정을 인식하는 것은 운전 중 위험한 감정 인식 및 제어 등 다양한 산업에서 이용될 수 있기 때문에 매우 중요한 과업이다. 본 논문에는 서로 도메인이 다른 음성과 영상 데이터를 모두 이용하여 감정을 인식하는 멀티모달 모델을 구현하여 감정 인식 연구를 진행했다. 본 연구에서는 RAVDESS 데이터를 이용하여 영상 데이터에 음성을 추출한 뒤 2D-CNN을 이용한 모델을 통해 음성 데이터 특징을 추출하였으며 영상 데이터는 Slowfast feature extractor를 통해 영상 데이터 특징을 추출하였다. 감정 인식을 위한 제안된 멀티모달 모델에서 음성 데이터와 영상 데이터의 특징 벡터를 통합하여 감정 인식을 시도하였다. 또한 멀티모달 모델을 구현할 때 많이 쓰인 방법론인 각 모델의 결과 스코어를 합치는 방법, 투표하는 방법을 이용하여 멀티모달 모델을 구현하고 본 논문에서 제안하는 방법과 비교하여 각 모델의 성능을 확인하였다.

Artificial Intelligence-Enhanced Neurocritical Care for Traumatic Brain Injury : Past, Present and Future

  • Kyung Ah Kim;Hakseung Kim;Eun Jin Ha;Byung C. Yoon;Dong-Joo Kim
    • Journal of Korean Neurosurgical Society
    • /
    • 제67권5호
    • /
    • pp.493-509
    • /
    • 2024
  • In neurointensive care units (NICUs), particularly in cases involving traumatic brain injury (TBI), swift and accurate decision-making is critical because of rapidly changing patient conditions and the risk of secondary brain injury. The use of artificial intelligence (AI) in NICU can enhance clinical decision support and provide valuable assistance in these complex scenarios. This article aims to provide a comprehensive review of the current status and future prospects of AI utilization in the NICU, along with the challenges that must be overcome to realize this. Presently, the primary application of AI in NICU is outcome prediction through the analysis of preadmission and high-resolution data during admission. Recent applications include augmented neuromonitoring via signal quality control and real-time event prediction. In addition, AI can integrate data gathered from various measures and support minimally invasive neuromonitoring to increase patient safety. However, despite the recent surge in AI adoption within the NICU, the majority of AI applications have been limited to simple classification tasks, thus leaving the true potential of AI largely untapped. Emerging AI technologies, such as generalist medical AI and digital twins, harbor immense potential for enhancing advanced neurocritical care through broader AI applications. If challenges such as acquiring high-quality data and ethical issues are overcome, these new AI technologies can be clinically utilized in the actual NICU environment. Emphasizing the need for continuous research and development to maximize the potential of AI in the NICU, we anticipate that this will further enhance the efficiency and accuracy of TBI treatment within the NICU.

LSTM-Autoencoder를 이용한 부유식 풍력터빈 블레이드 피치 시스템의 이상징후 감지 (Anomaly detection in blade pitch systems of floating wind turbines using LSTM-Autoencoder)

  • 조성필
    • 항공우주시스템공학회지
    • /
    • 제18권4호
    • /
    • pp.43-52
    • /
    • 2024
  • 본 논문은 부유식 풍력터빈의 블레이드 피치 시스템에서 발생하는 이상을 조기에 감지하기 위한 LSTM-Autoencoder 모델 기반의 이상징후 감지 시스템을 설명한다. 발전소 모니터링 시스템에 활용되는 센서 데이터는 주로 시계열 데이터로 구성되며, LSTM 네트워크는 이러한 시계열 데이터를 분석하기 위해 두 개의 단방향 LSTM 네트워크로 구성된다. 이를 통해 순차 데이터에 숨겨진 장기 의존성을 효과적으로 발견할 수 있다. 한편, 오토인코더 메커니즘은 정상상태 데이터로부터만 학습하여 이상상태를 분류될 수 있기 때문에 이 두 가지 네트워크를 결합하여 시스템에 발생하는 이상징후를 효과적으로 감지할 수 있다. 제안된 프레임워크의 효과를 입증하기 위해 풍력 터빈 모델에서 수집한 실제 다변량 시계열 데이터셋을 적용하였다. LSTM-AE 모델은 높은 이상징후 감지 정확도를 달성하여 우수한 성능을 보였다.

Named entity normalization for traditional herbal formula mentions

  • Ho Jang
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권10호
    • /
    • pp.105-111
    • /
    • 2024
  • 본 논문에서는 의학 텍스트에 기술된 한의 처방명의 개체명 정규화 방법을 연구하였다. 구체적으로, 주어진 텍스트에서 개체명으로 인식된 처방 명칭과 처방의 약어 등 처방 멘션들이 동일한 처방 개념을 가리키는지를 판단하는 방법론을 연구하였다. 이를 위해 두 가지 접근 방식을 시도하였다. 먼저, 의학 텍스트에 등장하는 처방 멘션에 대해 BERT 기반의 문맥 벡터와 멘션의 문자 유사도 정보를 기계 학습 모델의 특징으로 사용하여, 두 멘션의 동일 여부를 판별하는 지도 학습 기반 분류 모델을 구축하였다. 다음으로, GPT-4o mini 및 GPT-4o 기반의 프롬프트 질의 방식을 활용하여 동일한 작업을 수행하였다. 두 방법 모두 Precision, Recall, F1-score에서 0.9 이상의 성능을 보였으나, GPT-4o 기반 방법이 가장 높은 Precision과 F1-Score를 기록하였다. 본 연구의 결과는 한의학 텍스트에서 개체명 정규화를 위한 기계 학습 기반 접근 방식이 유의미한 성능을 달성할 수 있음을 보여주며, 특히 GPT-4o 기반 방법이 뛰어난 Precision과 F1-Score를 보임으로써 향후 한의학 도메인에서 지능형 정보 추출 시스템 개발에 중요한 기초 자료로 활용될 수 있을 것으로 기대된다.

온라인 쇼핑몰에서 상품 설명 이미지 내의 키워드 인식을 위한 딥러닝 훈련 데이터 자동 생성 방안 (The way to make training data for deep learning model to recognize keywords in product catalog image at E-commerce)

  • 김기태;오원석;임근원;차은우;신민영;김종우
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.1-23
    • /
    • 2018
  • E-commerce 환경의 발전으로 소비자들은 다양한 상품들을 한 자리에서 폭 넓게 비교할 수 있게 되었다. 하지만 온라인 쇼핑몰에 올라와있는 상당량의 주요 상품 정보들이 이미지 형태이기 때문에 컴퓨터가 인지할 수 있는 텍스트 기반 검색 시스템에 반영될 수 없다는 한계가 존재한다. 이러한 한계점은 일반적으로 기존 기계학습 기술 및 OCR(Optical Character Recognition) 기술을 활용해, 이미지 형태로 된 키워드를 인식함으로써 개선할 수 있다. 그러나 기존 OCR 기술은 이미지 안에 글자가 아닌 그림이 많고 글자 크기가 작으면 낮은 인식률을 보인다는 문제가 있다. 이에 본 연구에서는 기존 기술들의 한계점을 해결하기 위하여, 딥러닝 기반 사물인식 모형 중 하나인 SSD(Single Shot MultiBox Detector)를 개조하여 이미지 형태의 상품 카탈로그 내의 텍스트 인식모형을 설계하였다. 하지만 이를 학습시키기 위한 데이터를 구축하는 데 상당한 시간과 비용이 필요했는데, 이는 지도학습의 방법론을 따르는 SSD 모형은 훈련 데이터마다 직접 정답 라벨링을 해줘야 하기 때문이다. 본 연구는 이러한 문제점을 해결하기 위해 '훈련 데이터 자동 생성 프로그램'을 함께 개발하였다. 훈련 데이터 자동 생성 프로그램을 통해 수작업으로 데이터를 만드는 것에 비하여 시간과 비용을 대폭 절감할 수 있었으며, 생성된 훈련용 데이터를 통해 모형의 인식 성능을 높일 수 있었다. 더 나아가 실험연구를 통해 자동으로 생성된 훈련 데이터의 특징별로 인식기 모형의 성능에 얼마나 큰 영향을 끼치는지 알아보고, 성능 향상에 효과적인 데이터의 특징을 분석하였다. 본 연구를 통해서 개발된 상품 카탈로그 내 텍스트 인식모형과 훈련 데이터 자동 생성 프로그램은 온라인 쇼핑몰 판매자들의 상품 정보 등록 수고를 줄여줄 수 있으며, 구매자들의 상품 검색 시 결과의 정확성을 향상시키는 데 기여할 수 있을 것으로 기대한다.

온라인 주식 포럼의 핫토픽 탐지를 위한 감성분석 모형의 개발 (Development of Sentiment Analysis Model for the hot topic detection of online stock forums)

  • 홍태호;이태원;리징징
    • 지능정보연구
    • /
    • 제22권1호
    • /
    • pp.187-204
    • /
    • 2016
  • 소셜 미디어를 이용하는 사용자들이 직접 작성한 의견 혹은 리뷰를 이용하여 상호간의 교류 및 정보를 공유하게 되었다. 이를 통해 고객리뷰를 이용하는 오피니언마이닝, 웹마이닝 및 감성분석 등 다양한 연구분야에서의 연구가 진행되기 시작하였다. 특히, 감성분석은 어떠한 토픽(주제)를 기준으로 직접적으로 글을 작성한 사람들의 태도, 입장 및 감성을 알아내는데 목적을 두고 있다. 고객의 의견을 내포하고 있는 정보 혹은 데이터는 감성분석을 위한 핵심 데이터가 되기 때문에 토픽을 통한 고객들의 의견을 분석하는데 효율적이며, 기업에서는 소비자들의 니즈에 맞는 마케팅 혹은 투자자들의 시장동향에 따른 많은 투자가 이루어지고 있다. 본 연구에서는 중국의 온라인 시나 주식 포럼에서 사용자들이 직접 작성한 포스팅(글)을 이용하여 기존에 제시된 토픽들로부터 핫토픽을 선정하고 탐지하고자 한다. 기존에 사용된 감성 사전을 활용하여 토픽들에 대한 감성값과 극성을 분류하고, 군집분석을 통해 핫토픽을 선정하였다. 핫토픽을 선정하기 위해 k-means 알고리즘을 이용하였으며, 추가로 인공지능기법인 SOM을 적용하여 핫토픽 선정하는 절차를 제시하였다. 또한, 로짓, 의사결정나무, SVM 등의 데이터마이닝 기법을 이용하여 핫토픽 사전 탐지를 하는 감성분석을 위한 모형을 개발하여 관심지수를 통해 선정된 핫토픽과 탐지된 핫토픽을 비교하였다. 본 연구를 통해 핫토픽에 대한 정보 제공함으로써 최신 동향에 대한 흐름을 알 수 있게 되고, 주식 포럼에 대한 핫토픽은 주식 시장에서의 투자자들에게 유용한 정보를 제공하게 될 뿐만 아니라 소비자들의 니즈를 충족시킬 수 있을 것이라 기대된다.

하이브리드 인공신경망 모형을 이용한 부도 유형 예측 (Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model)

  • 조남옥;김현정;신경식
    • 지능정보연구
    • /
    • 제21권3호
    • /
    • pp.79-99
    • /
    • 2015
  • 부도 예측은 회계와 재무 분야에서 꾸준히 연구되고 있는 분야이다. 초기에는 주로 다중판별분석(multiple discriminant analysis)와 로짓 분석(logit analysis)과 같은 통계적 방법을 이용하였으나, 1990년대 이후에는 경영 분야의 분류 문제를 위해 많은 연구자들이 인공신경망(back-propagation neural network), 사계기반추론(case-based reasoning), 서포트 벡터 머신(support vector machine) 등과 같은 인공지능을 통한 접근법을 이용하여 통계적 방법보다 분류 성과 측면에서 우수함을 입증해왔다. 기존의 기업의 부도에 관한 연구에서 많은 연구자들이 재무비율을 이용하여 부도 예측 모형을 구축하는 것에 초점을 맞추어왔다. 부도예측에 관한 연구가 꾸준히 진행되고 있는 반면, 부도의 세부적인 유형을 예측하여 제시하는 것에 대한 연구는 미흡한 실정이었다. 따라서 본 연구에서는 수익성, 안정성, 활동성 지표를 중심으로 국내 비외감 건설업 기업들의 부도 여부뿐만 아니라 부도의 세부적인 유형까지 예측 가능한 모형을 개발하고자 한다. 본 연구에서는 부도 유형을 예측하기 위해 두 개의 인공신경망 모형을 결합한 하이브리드 접근법을 제안하였다. 첫 번째 인공신경망 모형은 부도예측을 위한 역전파 인공신경망을 이용한 모형이며, 두 번째 인공신경망 모형은 부도 데이터를 몇 개의 유형으로 분류하는 자기조직화지도(self-organizing map)을 이용한 모형이다. 실험 결과를 통해 정의된 5개의 부도 유형인 심각한 부도(severe bankruptcy), 안정성 부족(lack of stability), 활동성 부족(lack of activity), 수익성 부족(lack of profitability), 회생 가능한 부도(recoverable bankruptcy)는 재무 비율에 따라 유형별로 상이한 특성을 갖는 것을 확인할 수 있었다. 본 연구 결과를 통해 신용 평가 분야의 연구자와 실무자들이 기업의 부도의 유형에 대한 유용한 정보를 얻을 것으로 기대한다.