• Title/Summary/Keyword: classification learning

Search Result 3,347, Processing Time 0.029 seconds

K-Means Clustering with Deep Learning for Fingerprint Class Type Prediction

  • Mukoya, Esther;Rimiru, Richard;Kimwele, Michael;Mashava, Destine
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.29-36
    • /
    • 2022
  • In deep learning classification tasks, most models frequently assume that all labels are available for the training datasets. As such strategies to learn new concepts from unlabeled datasets are scarce. In fingerprint classification tasks, most of the fingerprint datasets are labelled using the subject/individual and fingerprint datasets labelled with finger type classes are scarce. In this paper, authors have developed approaches of classifying fingerprint images using the majorly known fingerprint classes. Our study provides a flexible method to learn new classes of fingerprints. Our classifier model combines both the clustering technique and use of deep learning to cluster and hence label the fingerprint images into appropriate classes. The K means clustering strategy explores the label uncertainty and high-density regions from unlabeled data to be clustered. Using similarity index, five clusters are created. Deep learning is then used to train a model using a publicly known fingerprint dataset with known finger class types. A prediction technique is then employed to predict the classes of the clusters from the trained model. Our proposed model is better and has less computational costs in learning new classes and hence significantly saving on labelling costs of fingerprint images.

Machine Learning-Based Rapid Prediction Method of Failure Mode for Reinforced Concrete Column (기계학습 기반 철근콘크리트 기둥에 대한 신속 파괴유형 예측 모델 개발 연구)

  • Kim, Subin;Oh, Keunyeong;Shin, Jiuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.113-119
    • /
    • 2024
  • Existing reinforced concrete buildings with seismically deficient column details affect the overall behavior depending on the failure type of column. This study aims to develop and validate a machine learning-based prediction model for the column failure modes (shear, flexure-shear, and flexure failure modes). For this purpose, artificial neural network (ANN), K-nearest neighbor (KNN), decision tree (DT), and random forest (RF) models were used, considering previously collected experimental data. Using four machine learning methodologies, we developed a classification learning model that can predict the column failure modes in terms of the input variables using concrete compressive strength, steel yield strength, axial load ratio, height-to-dept aspect ratio, longitudinal reinforcement ratio, and transverse reinforcement ratio. The performance of each machine learning model was compared and verified by calculating accuracy, precision, recall, F1-Score, and ROC. Based on the performance measurements of the classification model, the RF model represents the highest average value of the classification model performance measurements among the considered learning methods, and it can conservatively predict the shear failure mode. Thus, the RF model can rapidly predict the column failure modes with simple column details.

Red Tide Algea Image Classification using Deep Learning based Open Source (오픈 소스 기반의 딥러닝을 이용한 적조생물 이미지 분류)

  • Park, Sun;Kim, Jongwon
    • Smart Media Journal
    • /
    • v.7 no.2
    • /
    • pp.34-39
    • /
    • 2018
  • There are many studies on red tide due to the continuous increase in damage to domestic fish and shell farms by the harmful red tide. However, there is insufficient domestic research of identifying harmful red tide algae that automatically recognizes red tide images. In this paper, we propose a red tide image classification method using deep learning based open source. To solve the problem of recognition of various images of red tide algae, the proposed method is implemented by using tensorflow framework and Google image classification model.

Power Quality Disturbances Identification Method Based on Novel Hybrid Kernel Function

  • Zhao, Liquan;Gai, Meijiao
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.422-432
    • /
    • 2019
  • A hybrid kernel function of support vector machine is proposed to improve the classification performance of power quality disturbances. The kernel function mathematical model of support vector machine directly affects the classification performance. Different types of kernel functions have different generalization ability and learning ability. The single kernel function cannot have better ability both in learning and generalization. To overcome this problem, we propose a hybrid kernel function that is composed of two single kernel functions to improve both the ability in generation and learning. In simulations, we respectively used the single and multiple power quality disturbances to test classification performance of support vector machine algorithm with the proposed hybrid kernel function. Compared with other support vector machine algorithms, the improved support vector machine algorithm has better performance for the classification of power quality signals with single and multiple disturbances.

A Study on the Classification Model of Minhwa Genre Based on Deep Learning (딥러닝 기반 민화 장르 분류 모델 연구)

  • Yoon, Soorim;Lee, Young-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1524-1534
    • /
    • 2022
  • This study proposes the classification model of Minhwa genre based on object detection of deep learning. To detect unique Korean traditional objects in Minhwa, we construct custom datasets by labeling images using object keywords in Minhwa DB. We train YOLOv5 models with custom datasets, and classify images using predicted object labels result, the output of model training. The algorithm consists of two classification steps: 1) according to the painting technique and 2) genre of Minhwa. Through classifying paintings using this algorithm on the Internet, it is expected that the correct information of Minhwa can be built and provided to users forward.

SEQUENTIAL MINIMAL OPTIMIZATION WITH RANDOM FOREST ALGORITHM (SMORF) USING TWITTER CLASSIFICATION TECHNIQUES

  • J.Uma;K.Prabha
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.116-122
    • /
    • 2023
  • Sentiment categorization technique be commonly isolated interested in threes significant classifications name Machine Learning Procedure (ML), Lexicon Based Method (LB) also finally, the Hybrid Method. In Machine Learning Methods (ML) utilizes phonetic highlights with apply notable ML algorithm. In this paper, in classification and identification be complete base under in optimizations technique called sequential minimal optimization with Random Forest algorithm (SMORF) for expanding the exhibition and proficiency of sentiment classification framework. The three existing classification algorithms are compared with proposed SMORF algorithm. Imitation result within experiential structure is Precisions (P), recalls (R), F-measures (F) and accuracy metric. The proposed sequential minimal optimization with Random Forest (SMORF) provides the great accuracy.

A Fully Convolutional Network Model for Classifying Liver Fibrosis Stages from Ultrasound B-mode Images (초음파 B-모드 영상에서 FCN(fully convolutional network) 모델을 이용한 간 섬유화 단계 분류 알고리즘)

  • Kang, Sung Ho;You, Sun Kyoung;Lee, Jeong Eun;Ahn, Chi Young
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.48-54
    • /
    • 2020
  • In this paper, we deal with a liver fibrosis classification problem using ultrasound B-mode images. Commonly representative methods for classifying the stages of liver fibrosis include liver biopsy and diagnosis based on ultrasound images. The overall liver shape and the smoothness and roughness of speckle pattern represented in ultrasound images are used for determining the fibrosis stages. Although the ultrasound image based classification is used frequently as an alternative or complementary method of the invasive biopsy, it also has the limitations that liver fibrosis stage decision depends on the image quality and the doctor's experience. With the rapid development of deep learning algorithms, several studies using deep learning methods have been carried out for automated liver fibrosis classification and showed superior performance of high accuracy. The performance of those deep learning methods depends closely on the amount of datasets. We propose an enhanced U-net architecture to maximize the classification accuracy with limited small amount of image datasets. U-net is well known as a neural network for fast and precise segmentation of medical images. We design it newly for the purpose of classifying liver fibrosis stages. In order to assess the performance of the proposed architecture, numerical experiments are conducted on a total of 118 ultrasound B-mode images acquired from 78 patients with liver fibrosis symptoms of F0~F4 stages. The experimental results support that the performance of the proposed architecture is much better compared to the transfer learning using the pre-trained model of VGGNet.

A Study on Patent Literature Classification Using Distributed Representation of Technical Terms (기술용어 분산표현을 활용한 특허문헌 분류에 관한 연구)

  • Choi, Yunsoo;Choi, Sung-Pil
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.53 no.2
    • /
    • pp.179-199
    • /
    • 2019
  • In this paper, we propose optimal methodologies for classifying patent literature by examining various feature extraction methods, machine learning and deep learning models, and provide optimal performance through experiments. We compared the traditional BoW method and a distributed representation method (word embedding vector) as a feature extraction, and compared the morphological analysis and multi gram as the method of constructing the document collection. In addition, classification performance was verified using traditional machine learning model and deep learning model. Experimental results show that the best performance is achieved when we apply the deep learning model with distributed representation and morphological analysis based feature extraction. In Section, Class and Subclass classification experiments, We improved the performance by 5.71%, 18.84% and 21.53%, respectively, compared with traditional classification methods.

Comparison of Machine Learning Classification Models for the Development of Simulators for General X-ray Examination Education (일반엑스선검사 교육용 시뮬레이터 개발을 위한 기계학습 분류모델 비교)

  • Lee, In-Ja;Park, Chae-Yeon;Lee, Jun-Ho
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.111-116
    • /
    • 2022
  • In this study, the applicability of machine learning for the development of a simulator for general X-ray examination education is evaluated. To this end, k-nearest neighbor(kNN), support vector machine(SVM) and neural network(NN) classification models are analyzed to present the most suitable model by analyzing the results. Image data was obtained by taking 100 photos each corresponding to Posterior anterior(PA), Posterior anterior oblique(Obl), Lateral(Lat), Fan lateral(Fan lat). 70% of the acquired 400 image data were used as training sets for learning machine learning models and 30% were used as test sets for evaluation. and prediction model was constructed for right-handed PA, Obl, Lat, Fan lat image classification. Based on the data set, after constructing the classification model using the kNN, SVM, and NN models, each model was compared through an error matrix. As a result of the evaluation, the accuracy of kNN was 0.967 area under curve(AUC) was 0.993, and the accuracy of SVM was 0.992 AUC was 1.000. The accuracy of NN was 0.992 and AUC was 0.999, which was slightly lower in kNN, but all three models recorded high accuracy and AUC. In this study, right-handed PA, Obl, Lat, Fan lat images were classified and predicted using the machine learning classification models, kNN, SVM, and NN models. The prediction showed that SVM and NN were the same at 0.992, and AUC was similar at 1.000 and 0.999, indicating that both models showed high predictive power and were applicable to educational simulators.

Multi-modal Representation Learning for Classification of Imported Goods (수입물품의 품목 분류를 위한 멀티모달 표현 학습)

  • Apgil Lee;Keunho Choi;Gunwoo Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.203-214
    • /
    • 2023
  • The Korea Customs Service is efficiently handling business with an electronic customs system that can effectively handle one-stop business. This is the case and a more effective method is needed. Import and export require HS Code (Harmonized System Code) for classification and tax rate application for all goods, and item classification that classifies the HS Code is a highly difficult task that requires specialized knowledge and experience and is an important part of customs clearance procedures. Therefore, this study uses various types of data information such as product name, product description, and product image in the item classification request form to learn and develop a deep learning model to reflect information well based on Multimodal representation learning. It is expected to reduce the burden of customs duties by classifying and recommending HS Codes and help with customs procedures by promptly classifying items.