Crystal boundaries in igneous rocks are genetically classified in order to predict the geometric patterns of the boundaries which may aid deciphering the textural code in igneous rocks. Crystal boundaries may be formed by two end-member processes;(1) mechanical and (2) chemical removal of interstitial melt. Mechanical removal of the melt will form displacement impingement boundaries, while chemical removal of the melt will form growth impingement boundaries. The positions of boundaries relative to the material points may be affected by secondary processes such as (1) migration and (2) dissolution. The geometric features of crystal boundaries, suggested in this study, may be useful when studying igneous textures and processes, although it may be impossible to determine the suggested features with the analytical techniques currently avilable.
퍼지 규칙기반 분류 시스템에서 위한 퍼지 분할 경계들의 선택은 중요하고 어려운 문제이다. 그래서 이들을 효과적으로 결정하기 위해서 신경망, 유전자알고리즘 등과 같은 학습과정에 기반을 둔 다양한 방법들이 제안되었고, 이전 연구에서는 이들 방법에 대한 문제점을 지적하고 이를 개선하기 위하여 중첩 형태에서 퍼지 분할을 결정할 수 있는 방법에 대해서 논의하였다. 본 논문에서는 이전 연구의 방법을 3가지 형태의 분류 경계들, 즉 비중첩, 중첩, 1점 인접 형태로 확장하였다. 또한 이들을 학습에 의존하지 않고 주어진 데이터로부터 얻어진 통계적 정보만을 사용하여 결정하는 방법을 제안하고, 이를 패턴 분류 문제에 적용하여 제안된 방법의 효용성을 보인다.
퍼지 규칙기반 분류 시스템에서 초기의 퍼지 분할은 주어진 데이터가 가진 속성들의 도메인을 고려함으로서 결정되어지고, 최적의 분류 경계면은 초기에 정의된 퍼지 분할의 파라미터들을 조정함으로서 찾을 수 있다. 본 논문에서는 학습과정들을 사용하지 않고 패턴분류의 성능을 최대화하기 위해 통계적 정보에 기반을 둔 퍼지 분할의 선택방법을 제안한다. 제안된 방법에서 통계적 정보는 주어진 수치적인 데이터로부터 각 입력 속성의 '불확실성 영역', 즉 패턴분류문제에서 분류 경계면이 결정되는 영역을 추출하기 위해 사용되었다. 또한 통계적인 정보에 의해서 생성된 퍼지 분할구간에 대응하는 후보 규칙들을 추출하기 위한 방법과 그 후보 규칙들 간의 커플링 문제를 최소화하기 위한 방법도 추가적으로 논의하였다. 실험에서는 제안된 방법의 효용성을 보이기 위해 IRIS와 New Thyroid Cancer 데이터를 사용한 기존 패턴분류 방법들과의 분류 정확성을 비교하였고, 그 결과들로부터 제안된 방법이 기존의 방법들보다 더 좋은 분류 정확성을 제공함을 확인할 수 있었다.
This paper is concerned with the propram of the automatic mesh generation for 2-dimensional domain which contains the curved boundaries and holes. This program treats a new vertical-line drawing method. This method starts with 4-subdivisions of problem domain and the classification of the cross points of grid lines and boundaries. The new node is generated by the vertical line to the line connecting the two intersections of a boundary and two grid lines in gereral. And the node very close to the boundary is moved to the boundary. The automatic mesh generation composed of only rectangular elements is achieved by this procedure. The boundaries are piecewise-curves composed of lines, circles, arcs, and free curves. The free curves are generated by B-Spline form. Although there were some bad elements for the complex boundary, it was possible to obtain the acceptible rectangular elements for the given boundaries.
This paper is concerned with the program of the automatic mesh generation for 2-dimensional domain which contains the curved boundaries and holes. This program treats a new vertical - line drawing method. This method starts with 4-subdivisions of problem domain and the classification of the cross points of grid lines and boundaries. And the new node is generated by the vertical line to the line connecting the two intersections of a boundary and two grid lines in general. The boundaries are piecewise-curves composed of lines, circles, arcs, and free curves. The free curves are generated by B-Spline form. Although there were some bad elements for the complex boundary, it was possible to obtain the acceptable elements for the given boundaries. The results of automatic mesh generation can be verified directly by drawing on the computer monitor in executing the program. And it is possible to add the processes - that is, editing, hard copying, etc - using the script file in Auto-CAD.
도시 지역에서 객체를 탐지하기 위해 드론 고해상도 영상에 기계 학습 알고리즘을 적용하는 다양한 연구가 진행되었다. 그러나 대부분의 차량 추출 연구는 인스턴스 세그멘테이션 대신 경계 박스로 차량을 탐지하여 차량의 방향이나 정확한 경계를 알 수 없다는 한계점이 있다. 인스턴스 세그멘테이션은 개별 개체를 훈련하기 위한 노동 집약적인 레이블링 작업을 필요로 하므로, 차량 추출을 위해 자동 무감독 인스턴스 세그멘테이션을 수행하는 방법에 대한 연구가 필요하다. 따라서 본 연구에서는 드론 영상의 차량 경계 박스에 대해 무감독 SVM 분류 기반의 차량 추출 기법을 제안하였다. 연구 결과, 차량을 89% 정확도로 추출할 수 있음을 확인하였으며 차량 내의 분광 특성이 크게 다른 경우에도 차량을 추출할 수 있음을 확인하였다.
대한원격탐사학회 2008년도 International Symposium on Remote Sensing
/
pp.141-144
/
2008
Many studies have been conducted on extracting buildings from ALS(Airborne Laser Scanning) data. After segmentation or classification of building points, additional steps such as generalization is required to get straight boundary lines that better approximate the real ones. In much research, orthogonal constraints are used to improve accuracies and qualities. All the lines of the building boundaries are assumed to be either parallel or perpendicular mutually. However, this assumption is not valid in many cases and more complex shapes of buildings have been increased. A new algorithm is presented that is applicable to various complex buildings. It consists of three steps of boundary tracing, grouping, and regularization. The performance of our approach was evaluated by applying the algorithm to some buildings and the results showed that our proposed method has good potential for extracting building boundaries of various shapes.
This paper give further assessment on the original DoP-CPD classification scheme. This paper provides some additional comparative study on the DoP-CPD with H/A/alpha classifier in terms of multi look effects and classification performances. The statistics and multi looking effects of the DoP and CPD were analyzed with measured polarimetric SAR data. DoP-CPD is less sensitive to the number of averaging pixels than the entropy-alpha technique. A DoP-CPD diagram with appropriate boundaries between six different classes was then developed based on the data analysis. A polarimetric SAR image DoP-CPD classification technique is verified with C-band polarimetric RADARSAT-2 images.
In this paper, object-based classification of urban areas based on a combination of information from lidar and aerial images is introduced. High resolution images are frequently used in automatic classification, making use of the spectral characteristics of the features under study. However, in urban areas, pixel-based classification can be difficult since building colors differ and the shadows of buildings can obscure building segmentation. Therefore, if the boundaries of buildings can be extracted from lidar, this information could improve the accuracy of urban area classifications. In the data processing stage, lidar data and the aerial image are co-registered into the same coordinate system, and a local maxima filter is used for the building segmentation of lidar data, which are then converted into an image containing only building information. Then, multiresolution segmentation is achieved using a scale parameter, and a color and shape factor; a compactness factor and a layer weight are implemented for the classification using a class hierarchy. Results indicate that lidar can provide useful additional data when combined with high resolution images in the object-oriented hierarchical classification of urban areas.
A new polarimetric SAR image classification technique based on the degree of polarization (DoP) and the co-polarized phase-difference (CPD) is presented in this paper. Since the DoP and the CPD of a scattered wave provide information on the randomness of the scattering and the type of scattering mechanisms, at first, the statistics of the DoP and CPD are examined with measured polarimetric SAR image data. Then, a DoP-CPD diagram with appropriate boundaries between six different classes is developed based on the SAR image. The classification technique is verified using the JPL AirSAR and ALOS PALSAR polarimetric data. The technique may have capability to classify an SAR image into six major classes; a bare surface, a village, a crown-layer short vegetation canopy, a trunk-layer short vegetation canopy, a crown-layer forest, and a trunk-dominated forest.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.