• Title/Summary/Keyword: classification between tongue coatings and substance

Search Result 2, Processing Time 0.016 seconds

Basic Research for the Recognition Algorithm of Tongue Coatings for Implementing a Digital Automatic Diagnosis System (디지털 자동 설진 시스템 구축을 위한 설태 인식 알고리즘 기초 연구)

  • Kim, Keun-Ho;Ryu, Hyun-Hee;Kim, Jong-Yeol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.97-103
    • /
    • 2009
  • The status and the property of a tongue are the important indicators to diagnose one's health like physiological and clinicopathological changes of inner organs. However, the tongue diagnosis is affected by examination circumstances like a light source, patient's posture, and doctor's condition. To develop an automatic tongue diagnosis system for an objective and standardized diagnosis, classifying tongue coating is inevitable but difficult since the features like color and texture of the tongue coatings and substance have little difference, especially in the neighborhood on the tongue surface. The proposed method has two procedures; the first is to acquire the color table to classify tongue coatings and substance by automatically separating coating regions marked by oriental medical doctors, decomposing the color components of the region into hue, saturation and brightness and obtaining the 2nd order discriminant with statistical data of hue and saturation corresponding to each kind of tongue coatings, and the other is to apply the tongue region in an input image to the color table, resulting in separating the regions of tongue coatings and classifying them automatically. As a result, kinds of tongue coatings and substance were segmented from a face image corresponding to regions marked by oriental medical doctors and the color table for classification took hue and saturation values as inputs and produced the classification of the values into white coating, yellow coating and substance in a digital tongue diagnosis system. The coating regions classified by the proposed method were almost the same to the marked regions. The exactness of classification was 83%, which is the degree of correspondence between what Oriental medical doctors diagnosed and what the proposed method classified. Since the classified regions provide effective information, the proposed method can be used to make an objective and standardized diagnosis and applied to an ubiquitous healthcare system. Therefore, the method will be able to be widely used in Oriental medicine.

Design of discriminant function for thick and thin coating from the white coating (백태 중 후태 및 박태 분류 판별함수 설계)

  • Choi, Eun-Ji;Kim, Keun-Ho;Ryu, Hyun-Hee;Lee, Hae-Jung;Kim, Jong-Yeol
    • Korean Journal of Oriental Medicine
    • /
    • v.13 no.3
    • /
    • pp.119-124
    • /
    • 2007
  • Introduction: In Oriental medicine, the status of tongue is the important indicator to diagnose one's health, because it represents physiological and clinicopathological changes of inner parts of the body. The method of tongue diagnosis is not only convenient but also non-invasive, so tongue diagnosis is most widely used in Oriental medicine. By the way, since tongue diagnosis is affected by examination circumstances a lot, its performance depends on a light source, degrees of an angle, a medical doctor's condition etc. Therefore, it is not easy to make an objective and standardized tongue diagnosis. In order to solve this problem, in this study, we tried to design a discriminant function for thick and thin coating with color vectors of preprocessed image. Method: 52 subjects, who were diagnosed as white-coated tongue, were involved. Among them, 45 subjects diagnosed as thin coating and 7 subjects diagnosed as thick coating by oriental medical doctors, and then their tongue images were obtained from a digital tongue diagnosis system. Using those acquired tongue images, we implemented two steps: Preprocessing and image analyzing. The preprocessing part of this method includes histogram equalization and histogram stretching at each color component, especially, intensity and saturation. It makes the difference between tongue substance and tongue coating was more visible, so that we can separate tongue coating easily. Next part, we analyzed the characteristic of color values and found the threshold to divide tongue area into coating area. Then, from tongue coating image, it is possible to extract the variables that were important to classify thick and thin coating. Result : By statistical analysis, two significant vectors, associated with G, were found, which were able to describe the difference between thick and thin coating very well. Using these two variables, we designed the discriminant function for coating classification and examined its performance. As a result, the overall accuracy of thick and thin coating classification was 92.3%. Discussion : From the result, we can expect that the discriminant function is applicable to other coatings in a similar way. Also, it can be used to make an objective and standardized diagnosis.

  • PDF