• 제목/요약/키워드: classification algorithms

검색결과 1,195건 처리시간 0.024초

자동문서분류를 위한 텐서공간모델 기반 심층 신경망 (A Tensor Space Model based Deep Neural Network for Automated Text Classification)

  • 임푸름;김한준
    • 데이타베이스연구회지:데이타베이스연구
    • /
    • 제34권3호
    • /
    • pp.3-13
    • /
    • 2018
  • 자동문서분류(Text Classification)는 주어진 텍스트 문서를 이에 적합한 카테고리로 분류하는 텍스트 마이닝 기술 중의 하나로서 스팸메일 탐지, 뉴스분류, 자동응답, 감성분석, 쳇봇 등 다양한 분야에 활용되고 있다. 일반적으로 자동문서분류 시스템은 기계학습 알고리즘을 활용하며, 이 중에서 텍스트 데이터에 적합한 알고리즘인 나이브베이즈(Naive Bayes), 지지벡터머신(Support Vector Machine) 등이 합리적 수준의 성능을 보이는 것으로 알려져 있다. 최근 딥러닝 기술의 발전에 따라 자동문서분류 시스템의 성능을 개선하기 위해 순환신경망(Recurrent Neural Network)과 콘볼루션 신경망(Convolutional Neural Network)을 적용하는 연구가 소개되고 있다. 그러나 이러한 최신 기법들이 아직 완벽한 수준의 문서분류에는 미치지 못하고 있다. 본 논문은 그 이유가 텍스트 데이터가 단어 차원 중심의 벡터로 표현되어 텍스트에 내재한 의미 정보를 훼손하는데 주목하고, 선행 연구에서 그 효능이 검증된 시멘틱 텐서공간모델에 기반하여 심층 신경망 아키텍처를 제안하고 이를 활용한 문서분류기의 성능이 대폭 상승함을 보인다.

선박용 밸브의 내부 누설 진단을 위한 음향방출신호의 머신러닝 기법 적용 연구 (Diagnosis of Valve Internal Leakage for Ship Piping System using Acoustic Emission Signal-based Machine Learning Approach)

  • 이정형
    • 해양환경안전학회지
    • /
    • 제28권1호
    • /
    • pp.184-192
    • /
    • 2022
  • 밸브의 내부 누설 현상은 밸브의 내부 부품의 손상에 의해 발생하며 배관 시스템의 사고와 운전정지를 일으키는 주요 요인이다. 본 연구는 버터플라이형 밸브의 내부 누설에 따라 배관계에서 발생하는 음향방출 신호를 이용하여 배관 가동 중 실시간 누설 진단의 가능성을 검토하였다. 이를 위해 밸브의 작동 모드별로 측정한 시간영역의 AE 원시신호를 취득하였으며 이로부터 구축한 데이터셋은 데이터 기반의 인공지능 알고리즘에 적용하여 밸브의 내부 누설 유무를 진단하는 모델을 생성하였다. 누설 유무진단을 분류의 문제로 정의하여 SVM 기반의 머신러닝과 CNN 기반의 딥러닝 분류 알고리즘을 적용하였다. 데이터의 특징 추출에 기반한 SVM 분류 모델의 경우, 이진분류 모델에서 구축된 모델에 따라 83~90%의 정확도를 나타냈으며, 다중 클래스인 경우 분류 정확도가 66%로 감소하였다. 반면, CNN 기반의 다중 클래스 분류 모델의 경우 99.85%의 분류 정확도를 얻을 수 있었다. 결론적으로 밸브 내부 누설 진단을 위한 SVM 분류모델은 다중 클래스의 정확도 향상을 위해 적절한 특징 추출이 필요하며, CNN 기반의 분류모델은 프로세서의 성능 저하만 없다면 누설진단과 밸브 개도 분류에 효율적인 접근방법임을 확인하였다.

Artificial Intelligence and Pattern Recognition Using Data Mining Algorithms

  • Al-Shamiri, Abdulkawi Yahya Radman
    • International Journal of Computer Science & Network Security
    • /
    • 제21권7호
    • /
    • pp.221-232
    • /
    • 2021
  • In recent years, with the existence of huge amounts of data stored in huge databases, the need for developing accurate tools for analyzing data and extracting information and knowledge from the huge and multi-source databases have been increased. Hence, new and modern techniques have emerged that will contribute to the development of all other sciences. Knowledge discovery techniques are among these technologies, one popular technique of knowledge discovery techniques is data mining which aims to knowledge discovery from huge amounts of data. Such modern technologies of knowledge discovery will contribute to the development of all other fields. Data mining is important, interesting technique, and has many different and varied algorithms; Therefore, this paper aims to present overview of data mining, and clarify the most important of those algorithms and their uses.

위치정보 및 사용자 경험을 반영하는 모바일 PA에이전트의 설계 (Designing mobile personal assistant agent based on users' experience and their position information)

  • 강신봉;노상욱
    • 인터넷정보학회논문지
    • /
    • 제12권1호
    • /
    • pp.99-110
    • /
    • 2011
  • 급변하는 모바일 환경에서 스마트폰을 비롯한 모바일 기기는 엔터테인먼트, 비즈니스, 정보서비스 등 사용자들의 삶의 방식을 직접적으로 변화시키는 핵심 도구로써의 역할을 하고 있다. 모바일 서비스 중 특히 사용자의 위치정보를 활용하여 서비스를 제공하는 위치기반 서비스(Location Based Service)는 검색, 증강현실, 모바일 SNS(Social Network Service), 게임 등의 다른 서비스 및 콘텐츠와 결합하여 사용자의 다양한 요구를 충족시키며 주요 서비스로 자리 잡아 가고 있다. 본 논문에서는 모바일 서비스가 갖는 잠재적 가능성을 이용하여 모바일 기기의 사용성을 증대시키며, 서비스의 복잡성을 해결하기 위하여 복잡한 태스크를 숨기고 사용자를 대신하여 프로세스를 수행시킬 수 있는 방안에 중점을 둔다. 사용자의 의도 혹은 선호도를 파악하여 사용자에게 개인화된 서비스를 제공하는 PA(Personal Assistant) 에이전트의 개념을 모바일 환경에 적용하기 위한 기법을 제시한다. 사용자의 선호도를 파악하고 개인화된 서비스를 제공하기 위하여 클러스터링 알고리즘과 데이터 분류 알고리즘을 사용하였다. 실험을 통하여 사용자 패턴별로 생성한 클러스터에 분류 알고리즘을 적용한 결과에 대한 분류정확도를 측정하였으며, 제안한 기법의 클러스터별 분류 정확도는 기존의 기법과 비교하여 17.42% 증가하였다.

하이퍼스펙트럴 영상의 분류 기법 비교 (A Comparison of Classification Techniques in Hyperspectral Image)

  • 가칠오;김대성;변영기;김용일
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 추계학술발표회 논문집
    • /
    • pp.251-256
    • /
    • 2004
  • The image classification is one of the most important studies in the remote sensing. In general, the MLC(Maximum Likelihood Classification) classification that in consideration of distribution of training information is the most effective way but it produces a bad result when we apply it to actual hyperspectral image with the same classification technique. The purpose of this research is to reveal that which one is the most effective and suitable way of the classification algorithms iii the hyperspectral image classification. To confirm this matter, we apply the MLC classification algorithm which has distribution information and SAM(Spectral Angle Mapper), SFF(Spectral Feature Fitting) algorithm which use average information of the training class to both multispectral image and hyperspectral image. I conclude this result through quantitative and visual analysis using confusion matrix could confirm that SAM and SFF algorithm using of spectral pattern in vector domain is more effective way in the hyperspectral image classification than MLC which considered distribution.

  • PDF

Object oriented classification using Landsat images

  • Yoon, Geun-Won;Cho, Seong-Ik;Jeong, Soo;Park, Jong-Hyun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.204-206
    • /
    • 2003
  • In order to utilize remote sensed images effectively, a lot of image classification methods are suggested for many years. But, the accuracy of traditional methods based on pixel-based classification is not high in general. In this study, object oriented classification based on image segmentation is used to classify Landsat images. A necessary prerequisite for object oriented image classification is successful image segmentation. Object oriented image classification, which is based on fuzzy logic, allows the integration of a broad spectrum of different object features, such as spectral values , shape and texture. Landsat images are divided into urban, agriculture, forest, grassland, wetland, barren and water in sochon-gun, Chungcheongnam-do using object oriented classification algorithms in this paper. Preliminary results will help to perform an automatic image classification in the future.

  • PDF

Partial AUC maximization for essential gene prediction using genetic algorithms

  • Hwang, Kyu-Baek;Ha, Beom-Yong;Ju, Sanghun;Kim, Sangsoo
    • BMB Reports
    • /
    • 제46권1호
    • /
    • pp.41-46
    • /
    • 2013
  • Identifying genes indispensable for an organism's life and their characteristics is one of the central questions in current biological research, and hence it would be helpful to develop computational approaches towards the prediction of essential genes. The performance of a predictor is usually measured by the area under the receiver operating characteristic curve (AUC). We propose a novel method by implementing genetic algorithms to maximize the partial AUC that is restricted to a specific interval of lower false positive rate (FPR), the region relevant to follow-up experimental validation. Our predictor uses various features based on sequence information, protein-protein interaction network topology, and gene expression profiles. A feature selection wrapper was developed to alleviate the over-fitting problem and to weigh each feature's relevance to prediction. We evaluated our method using the proteome of budding yeast. Our implementation of genetic algorithms maximizing the partial AUC below 0.05 or 0.10 of FPR outperformed other popular classification methods.

Emotion Recognition in Arabic Speech from Saudi Dialect Corpus Using Machine Learning and Deep Learning Algorithms

  • Hanaa Alamri;Hanan S. Alshanbari
    • International Journal of Computer Science & Network Security
    • /
    • 제23권8호
    • /
    • pp.9-16
    • /
    • 2023
  • Speech can actively elicit feelings and attitudes by using words. It is important for researchers to identify the emotional content contained in speech signals as well as the sort of emotion that resulted from the speech that was made. In this study, we studied the emotion recognition system using a database in Arabic, especially in the Saudi dialect, the database is from a YouTube channel called Telfaz11, The four emotions that were examined were anger, happiness, sadness, and neutral. In our experiments, we extracted features from audio signals, such as Mel Frequency Cepstral Coefficient (MFCC) and Zero-Crossing Rate (ZCR), then we classified emotions using many classification algorithms such as machine learning algorithms (Support Vector Machine (SVM) and K-Nearest Neighbor (KNN)) and deep learning algorithms such as (Convolution Neural Network (CNN) and Long Short-Term Memory (LSTM)). Our Experiments showed that the MFCC feature extraction method and CNN model obtained the best accuracy result with 95%, proving the effectiveness of this classification system in recognizing Arabic spoken emotions.

퍼지 알고리즘의 융합에 의한 다중분광 영상의 패턴분류 (Pattern Classification of Multi-Spectral Satellite Images based on Fusion of Fuzzy Algorithms)

  • 전영준;김진일
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권7호
    • /
    • pp.674-682
    • /
    • 2005
  • 본 논문에서는 다중분광 영상의 분류를 위하여 퍼지 G-K(Gustafson- Kessel) 알고리즘과 PCM 알고리즘을 융합한 분류방법을 제안하였다. 제안된 방법은 학습데이타를 이용하여 퍼지 G-K 알고리즘을 수행한 후 그 결과를 이용하여 PCM 알고리즘을 수행한다 PCM 알고리즘과 퍼지 G-K 알고리즘 분류결과를 비교하여 그 결과가 일치하면 해당 항목으로 분류항목을 결정한다. 일치하지 않는 화소는 PCM 알고리즘의 평균내부거리 안쪽에 있는 화소들을 새로운 학습데이타로 하여 베이시안 최대우도 분류를 수행하여 분류항목을 결정한다. 평균내부거리 안쪽에 있는 화소 데이타는 정규분포형태를 보여준다. 다차원 다중분광 영상인 IKONOS와 LANDSAT TM 위성영상을 이용하여 제안된 알고리즘의 효율성을 검증한 결과 퍼지 G-K 알고리즘과 PCM 알고리즘 그리고 전통적인 분류 방법인 최대우도 분류 알고리즘보다 전체 정확도가 더 높은 결과를 얻을 수 있었다

Gait-Based Gender Classification Using a Correlation-Based Feature Selection Technique

  • Beom Kwon
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권3호
    • /
    • pp.55-66
    • /
    • 2024
  • 성별 분류 기술은 법의학, 감시 시스템, 인구 통계 연구 등 다양한 분야에서 활용될 수 있기 때문에, 연구자들로부터 많은 관심을 받고 있다. 남성과 여성의 보행 사이에는 서로 구별되는 특징이 있다는 것이 기존 연구들에서 밝혀지면서, 3차원 보행 데이터에서 성별을 분류하는 다양한 기술들이 제안됐다. 하지만, 기존 기술들을 사용해 3차원 보행 데이터로부터 추출한 보행 특징 중에는 서로 유사 또는 중복되거나 성별 분류에 도움이 되지 않는 특징들도 있다. 이에 본 연구에서는 상관관계 기반 특징 선별 기술을 활용해, 성별 분류에 도움이 되는 특징들을 선별하는 방법을 제안한다. 그리고 제안하는 특징 선별 기술의 효용성을 입증하기 위해서, 인터넷상에 공개된 3차원 보행 데이터 세트(Dataset)를 활용하여 제안하는 특징 선별 기술을 적용하기 전과 후에 대해 성별 분류 모델들의 성능을 비교 분석하였다. 실험에는 이진 분류 문제에 적용할 수 있는 여덟 가지의 머신러닝 알고리즘(Machine Learning Algorithms)을 활용하였다. 실험 결과, 제안하는 특징 선별 기술을 사용하면 성별 분류 성능은 유지하면서, 특징의 개수를 82개에서 60개까지, 22개를 줄일 수 있다는 것을 입증하였다.