• 제목/요약/키워드: classical Watson's theorem for $_3F_2$

검색결과 3건 처리시간 0.02초

NOTE ON THE CLASSICAL WATSON'S THEOREM FOR THE SERIES 3F2

  • Choi, Junesang;Agarwal, P.
    • 호남수학학술지
    • /
    • 제35권4호
    • /
    • pp.701-706
    • /
    • 2013
  • Summation theorems for hypergeometric series $_2F_1$ and generalized hypergeometric series $_pF_q$ play important roles in themselves and their diverse applications. Some summation theorems for $_2F_1$ and $_pF_q$ have been established in several or many ways. Here we give a proof of Watson's classical summation theorem for the series $_3F_2$(1) by following the same lines used by Rakha [7] except for the last step in which we applied an integral formula introduced by Choi et al. [3].

Generalizations of Dixon's and Whipple's Theorems on the Sum of a 3F2

  • Choi, Junesang;Malani, Shaloo;Rathie, Arjun K.
    • Kyungpook Mathematical Journal
    • /
    • 제47권3호
    • /
    • pp.449-454
    • /
    • 2007
  • InIn this paper we consider generalizations of the classical Dixon's theorem and the classical Whipple's theorem on the sum of a $_3F_2$. The results are derived with the help of generalized Watson's theorem obtained earlier by Mitra. A large number of results contiguous to Dixon's and Whipple's theorems obtained earlier by Lavoie, Grondin and Rathie, and Lavoie, Grondin, Rathie and Arora follow special cases of our main findings.

  • PDF

ON A NEW CLASS OF DOUBLE INTEGRALS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTION 3F2

  • Kim, Insuk
    • 호남수학학술지
    • /
    • 제40권4호
    • /
    • pp.809-816
    • /
    • 2018
  • The aim of this research paper is to evaluate fifty double integrals invoving generalized hypergeometric function (25 each) in the form of $${{\int}^1_0}{{\int}^1_0}\;x^{{\gamma}-1}y^{{\gamma}+c-1}(1-x)^{c-1}(1-y)^{c+{\ell}}(1-xy)^{{\delta}-2c-{\ell}-1}{\times}_3F_2\[{^{a,\;b,\;2c+{\ell}+1}_{\frac{1}{2}(a+b+i+1),\;2c+j}}\;;{\frac{(1-x)y}{1-xy}}\]dxdy$$ and $${{\int}^1_0}{{\int}^1_0}\;x^{{\gamma}-1}y^{{\gamma}+c+{\ell}}(1-x)^{c+{\ell}}(1-y)^{c-1}(1-xy)^{{\delta}-2c-{\ell}-1}{\times}_3F_2\[{^{a,\;b,\;2c+{\ell}+1}_{\frac{1}{2}(a+b+i+1),\;2c+j}}\;;{\frac{1-y}{1-xy}}\]dxdy$$ in the most general form for any ${\ell}{\in}{\mathbb{Z}}$ and i, j = 0, ${\pm}1$, ${\pm}2$. The results are derived with the help of generalization of Edwards's well known double integral due to Kim, et al. and generalized classical Watson's summation theorem obtained earlier by Lavoie, et al. More than one hundred ineteresting special cases have also been obtained.