• Title/Summary/Keyword: class imbalance classification

Search Result 56, Processing Time 0.02 seconds

A Hybrid Oversampling Technique for Imbalanced Structured Data based on SMOTE and Adapted CycleGAN (불균형 정형 데이터를 위한 SMOTE와 변형 CycleGAN 기반 하이브리드 오버샘플링 기법)

  • Jung-Dam Noh;Byounggu Choi
    • Information Systems Review
    • /
    • v.24 no.4
    • /
    • pp.97-118
    • /
    • 2022
  • As generative adversarial network (GAN) based oversampling techniques have achieved impressive results in class imbalance of unstructured dataset such as image, many studies have begun to apply it to solving the problem of imbalance in structured dataset. However, these studies have failed to reflect the characteristics of structured data due to changing the data structure into an unstructured data format. In order to overcome the limitation, this study adapted CycleGAN to reflect the characteristics of structured data, and proposed hybridization of synthetic minority oversampling technique (SMOTE) and the adapted CycleGAN. In particular, this study tried to overcome the limitations of existing studies by using a one-dimensional convolutional neural network unlike previous studies that used two-dimensional convolutional neural network. Oversampling based on the method proposed have been experimented using various datasets and compared the performance of the method with existing oversampling methods such as SMOTE and adaptive synthetic sampling (ADASYN). The results indicated the proposed hybrid oversampling method showed superior performance compared to the existing methods when data have more dimensions or higher degree of imbalance. This study implied that the classification performance of oversampling structured data can be improved using the proposed hybrid oversampling method that considers the characteristic of structured data.

A Case of Pleural Effusion in a Patient with Heart Failure with Preserved Ejection Fraction Improved by A Combined Korean-Western Medicine Approach (좌심실 수축 기능 보전 심부전증으로 인한 흉수에 대한 한양방 복합치료 치험 1례)

  • Ha, Won Jung;Seo, Yuna;Lee, Young seon;Cho, Ki-Ho;Mun, Sang-Kwan;Jung, Woo-Sang;Kwon, Seungwon
    • The Journal of the Society of Stroke on Korean Medicine
    • /
    • v.22 no.1
    • /
    • pp.45-56
    • /
    • 2021
  • ■ Background Heart Failure with Preserved Ejection Fraction(HFpEF) is a heart failure that appears to have normal contraction function. In the case of HFpEF, no pharmacological therapy has been found to improve clinical prognosis, so it should be approached as an symptomatic treatment, therefore alternatives are needed due to concerns over adverse effects such as electrolyte imbalance caused by medication. ■ Case report A 81 year old female patient with Heart Failure with Preserved Ejection Fraction(HFpEF) patient complained dyspnea. Herbal prescription Mokbanggi-tang and Oryeongsan was administered on 6th day and 8th day respectively since the symptoms started. The NYHA Classification and Chest X-ray had been evaluated during the treatment period. Until the 7th day, the patient was classified as Class II, and when discharged from the hospital on the 28th day, it gradually improved and was classified as Class II. Chest X-Ray took on 2nd day showed pleural effusion and it was aggravated until 13th day. Follow up Chest X-Ray showed improving state of pleural effusion from 20th day and gradually got better. Mokbanggi-tang treatment continued for 52 days and stopped on 58th day. After Mokbanggi-tang treatment ended, only Oryeongsan treatment was maintained. ■ Conclusion The present case report suggests that Korean-Western medicine approach with Mokbangki-tang and Oryeongsan might be effective to pleural effusion and heart failure symptoms such as poor physical activity shown in a NYHA Classification. This shows that Mokbanggi-tang and Oryeongsan can be a therapeutic option as a treatment for patient with Heart Failure with Preserved Ejection Fraction(HFpEF).

Development of a Deep Learning Algorithm for Anomaly Detection of Manufacturing Facility (설비 이상탐지를 위한 딥러닝 알고리즘 개발)

  • Kim, Min-Hee;Jin, Kyo-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.199-206
    • /
    • 2022
  • A malfunction or breakdown of a manufacturing facility leads to product defects and the suspension of production lines, resulting in huge financial losses for manufacturers. Due to the spread of smart factory services, a large amount of data is being collected in factories, and AI-based research is being conducted to predict and diagnose manufacturing facility breakdowns or manufacturing site efficiency. However, because of the characteristics of manufacturing data, such as a severe class imbalance about abnormalities and ambiguous label information that distinguishes abnormalities, developing classification or anomaly detection models is highly difficult. In this paper, we present an deep learning algorithm for anomaly detection of a manufacturing facility using reconstruction loss of CNN-based model and ananlyze its performance. The algorithm detects anomalies by relying solely on normal data from the facility's manufacturing data in the exclusion of abnormal data.

Comparison of Korean Classification Models' Korean Essay Score Range Prediction Performance (한국어 학습 모델별 한국어 쓰기 답안지 점수 구간 예측 성능 비교)

  • Cho, Heeryon;Im, Hyeonyeol;Yi, Yumi;Cha, Junwoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.3
    • /
    • pp.133-140
    • /
    • 2022
  • We investigate the performance of deep learning-based Korean language models on a task of predicting the score range of Korean essays written by foreign students. We construct a data set containing a total of 304 essays, which include essays discussing the criteria for choosing a job ('job'), conditions of a happy life ('happ'), relationship between money and happiness ('econ'), and definition of success ('succ'). These essays were labeled according to four letter grades (A, B, C, and D), and a total of eleven essay score range prediction experiments were conducted (i.e., five for predicting the score range of 'job' essays, five for predicting the score range of 'happiness' essays, and one for predicting the score range of mixed topic essays). Three deep learning-based Korean language models, KoBERT, KcBERT, and KR-BERT, were fine-tuned using various training data. Moreover, two traditional probabilistic machine learning classifiers, naive Bayes and logistic regression, were also evaluated. Experiment results show that deep learning-based Korean language models performed better than the two traditional classifiers, with KR-BERT performing the best with 55.83% overall average prediction accuracy. A close second was KcBERT (55.77%) followed by KoBERT (54.91%). The performances of naive Bayes and logistic regression classifiers were 52.52% and 50.28% respectively. Due to the scarcity of training data and the imbalance in class distribution, the overall prediction performance was not high for all classifiers. Moreover, the classifiers' vocabulary did not explicitly capture the error features that were helpful in correctly grading the Korean essay. By overcoming these two limitations, we expect the score range prediction performance to improve.

Sorghum Field Segmentation with U-Net from UAV RGB (무인기 기반 RGB 영상 활용 U-Net을 이용한 수수 재배지 분할)

  • Kisu Park;Chanseok Ryu ;Yeseong Kang;Eunri Kim;Jongchan Jeong;Jinki Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.521-535
    • /
    • 2023
  • When converting rice fields into fields,sorghum (sorghum bicolor L. Moench) has excellent moisture resistance, enabling stable production along with soybeans. Therefore, it is a crop that is expected to improve the self-sufficiency rate of domestic food crops and solve the rice supply-demand imbalance problem. However, there is a lack of fundamental statistics,such as cultivation fields required for estimating yields, due to the traditional survey method, which takes a long time even with a large manpower. In this study, U-Net was applied to RGB images based on unmanned aerial vehicle to confirm the possibility of non-destructive segmentation of sorghum cultivation fields. RGB images were acquired on July 28, August 13, and August 25, 2022. On each image acquisition date, datasets were divided into 6,000 training datasets and 1,000 validation datasets with a size of 512 × 512 images. Classification models were developed based on three classes consisting of Sorghum fields(sorghum), rice and soybean fields(others), and non-agricultural fields(background), and two classes consisting of sorghum and non-sorghum (others+background). The classification accuracy of sorghum cultivation fields was higher than 0.91 in the three class-based models at all acquisition dates, but learning confusion occurred in the other classes in the August dataset. In contrast, the two-class-based model showed an accuracy of 0.95 or better in all classes, with stable learning on the August dataset. As a result, two class-based models in August will be advantageous for calculating the cultivation fields of sorghum.

Research on ITB Contract Terms Classification Model for Risk Management in EPC Projects: Deep Learning-Based PLM Ensemble Techniques (EPC 프로젝트의 위험 관리를 위한 ITB 문서 조항 분류 모델 연구: 딥러닝 기반 PLM 앙상블 기법 활용)

  • Hyunsang Lee;Wonseok Lee;Bogeun Jo;Heejun Lee;Sangjin Oh;Sangwoo You;Maru Nam;Hyunsik Lee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.471-480
    • /
    • 2023
  • The Korean construction order volume in South Korea grew significantly from 91.3 trillion won in public orders in 2013 to a total of 212 trillion won in 2021, particularly in the private sector. As the size of the domestic and overseas markets grew, the scale and complexity of EPC (Engineering, Procurement, Construction) projects increased, and risk management of project management and ITB (Invitation to Bid) documents became a critical issue. The time granted to actual construction companies in the bidding process following the EPC project award is not only limited, but also extremely challenging to review all the risk terms in the ITB document due to manpower and cost issues. Previous research attempted to categorize the risk terms in EPC contract documents and detect them based on AI, but there were limitations to practical use due to problems related to data, such as the limit of labeled data utilization and class imbalance. Therefore, this study aims to develop an AI model that can categorize the contract terms based on the FIDIC Yellow 2017(Federation Internationale Des Ingenieurs-Conseils Contract terms) standard in detail, rather than defining and classifying risk terms like previous research. A multi-text classification function is necessary because the contract terms that need to be reviewed in detail may vary depending on the scale and type of the project. To enhance the performance of the multi-text classification model, we developed the ELECTRA PLM (Pre-trained Language Model) capable of efficiently learning the context of text data from the pre-training stage, and conducted a four-step experiment to validate the performance of the model. As a result, the ensemble version of the self-developed ITB-ELECTRA model and Legal-BERT achieved the best performance with a weighted average F1-Score of 76% in the classification of 57 contract terms.