• Title/Summary/Keyword: clamping capacitor

Search Result 25, Processing Time 0.036 seconds

A Novel Zero-Voltage-Switching Push-Pull DC-DC Converter for High Input Voltage and High Power Applications

  • Mao Saijun;Wang Huizhen;Yan Yangguang
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.343-349
    • /
    • 2005
  • This paper proposes a novel zero-voltage-switching (ZVS) Push-pull DC-DC Converter for high input voltage and high power applications. This topology utilizes two switches in series to replace one switch in conventional push-pull converter, and two clamping diodes are introduced. The voltage stress of the switches is the input voltage, and the switches can realize ZVS with the use of the leakage inductance of the transformer. Furthermore, secondary full-wave rectifier with a clamping capacitor is used to eliminate the voltage oscillation and spike of the rectifier diodes due to the reverse recovery. Therefore, the electromagnetic interference is reduced effectively. The operation principle of the proposed converter is analyzed theoretically. The output characteristic, ZVS condition and design principle of the clamping capacitor are discussed. Experimental results obtained from a 270V input 2kW prototype with $95.8\%$ high efficiency confirms the design.

A Study on Drive of the Multicurrent Source Inverter Inserting the VCC (VCC를 첨가한 다중 전류형 인버터 구동에 관한 연구)

  • 정연택;홍일선;황락훈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.4
    • /
    • pp.269-278
    • /
    • 1989
  • When the induction motor is operated by CSI, the commutation capacitance in the CSI circuit is increased according to the increase of large capacitor system. The output voltage spikes are generated at the moment of charge and discharge of the commutation capacitor. Also, since output current comprise a great number of harmonics, torque ripples of the motor are generated, having bad effects on the motor. In this study, by adopting the 18-phase multiple high Frequency Current Source Inverter (HFCSI), torque ripples generated by the voltage spikes are mostly eliminated except the 17th and 19th harmonics. To reduce the voltage spikes comprised in the output voltage, particularly, the methods of eliminating the cause of bad effect upon the motor are proposed in this paper. In the proposed method, by using additional voltage Clamping Curcuit (VCC), it is possible to select the values of commutation capacitor energy loss in commutating, the commutating capacitor, and the capacitor in the clamping circuit.

A Study on the DC Link Inductor and Clamping Capacitor in GTO Inverter (GTO 인버터에서의 직류 링크 인덕터 및 클램핑 커패시터의 특성 고찰)

  • Jeon, Young-Keon;Yoon, Yong-Ki;Lee, Gie-Tae;Kim, Jin-Pyo;Choi, Sang-Won;Lee, Jong-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2628-2631
    • /
    • 1999
  • One of the limitations of conventional ASCI for high-power induction motor drives is the high voltage that is produced in the commutation capacitors during the current commutation from one phase to another. Since the capacitor voltage appears directly on the semiconductor components, it increases their required voltage ratings. Also, the high-voltage spikes generated at the motor terminals may cause damage to the motor insulation. And we investigated how de input power is increased or decreased according to size of de link inductor. In this paper, de link inductor and clamping capacitor in GTO inverter suitable for induction motor drives are propose through experiment.

  • PDF

A study on the multi-inverter drive that is including the voltage clamping circuit (Voltage Clamping 회로를 첨가한 다중 인버어터의 구동에 관한 연구)

  • Jung, Yeon-Tack;Han, Kyung-Hee;Whang, Lak-Hoon;Kim, Ki-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.124-126
    • /
    • 1988
  • The induction motor is constantly operated by general source, thus its speed control is employed an inverter system which can convert DC into AC. The CSI(Current Source Inverter) which have a commutation capacitor in its circuit is liable to cause a voltage spike that it is due to charge and discharge of commutation capacitor. And six phases inverter makes a number of harmonics. These have a effect upon the induction motor badly. This paper aims to suggest a way to reduce such adverse effects by maximally cutting the voltage spike as well as by eliminating a number of harmonics through the operation of Multi-HFCSI.

  • PDF

A Novel Two-Switch Active Clamp Forward Converter for High Input Voltage Applications

  • Kim, Jae-Kuk;Oh, Won-Sik;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.520-522
    • /
    • 2008
  • A novel two-switch active clamp forward converter suitable for high input voltage applications is proposed. The main advantage of the proposed converter, compared to the conventional active forward converters, is that circuit complexity is reduced and the voltage stress of the main switches is effectively clamped to either the input voltage or the clamping capacitor voltage by two clamping diodes without limiting the maximum duty ratio. Also, the clamping circuit does not include additional active switches, so a low cost can be achieved without degrading the efficiency. Therefore, the proposed converter can feature high efficiency and low cost for high input voltage applications. The operational principles, features, and design considerations of the proposed converter are presented in this paper. The validity of this study is confirmed by the experimental results from a prototype with 200W, 375V input, and 12V output.

  • PDF

Normally-Off Operation of AlGaN/GaN Heterojunction Field-Effect Transistor with Clamping Diode

  • Han, Sang-Woo;Park, Sung-Hoon;Kim, Hyun-Seop;Lim, Jongtae;Cho, Chun-Hyung;Cha, Ho-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.221-225
    • /
    • 2016
  • This paper reports a new method to enable the normally-off operation of AlGaN/GaN heterojunction field-effect transistors (HFETs). A capacitor was connected to the gate input node of a normally-on AlGaN/GaN HFET with a Schottky gate where the Schottky gate acted as a clamping diode. The combination of the capacitor and Schottky gate functioned as a clamp circuit to downshift the input signal to enable the normally-off operation. The normally-off operation with a virtual threshold voltage of 5.3 V was successfully demonstrated with excellent dynamic switching characteristics.

The High Efficiency Operation of Induction Motor by Current Source GTO Inverter with Low Loss Commutation and Snubber Energy (轉流 및 Snubber 에너지 손실을 저감시킨 전류형 GTO 인버터에 의한 유도전동기의 고효율 운전)

  • 최상원;김진표;이종하
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.1
    • /
    • pp.117-125
    • /
    • 1998
  • In this paper, in order to develop the three phase GTO CSI of high efficiency 1M drive with low loss commutation and snubber energy, we studied the energy recovery circuit to recover stored energy in clamping capacitor and DC link inductor(VCC-l and VCC-2), and snubber capacitor(VCC-3). By using an induction motor as the load of inverter, experimental results show that dissipated DC power is decreased and capacitor voltage Vc is effectively suppressed by VCC-2 and VCC-3 system, and the validity of VCC-3 system with low loss commutation and snubber energy is proofed.roofed.

  • PDF

Analysis, Design and Implementation of a New Chokeless Interleaved ZVS Forward-Flyback Converter

  • Taheri, Meghdad;Milimonfared, Jafar;Namadmalan, Alireza;Bayat, Hasan;Bakhshizadeh, Mohammad Kazem
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.499-506
    • /
    • 2011
  • This paper presents an interleaved active-clamping zero-voltage-switching (ZVS) forward-flyback converter without an output choke. The presented topology has two active-clamping circuits with two separated transformers. Because of the interleaved operation of the converter, the output current ripple will be reduced. The proposed converter can approximately share the total load current between the two secondaries. Therefore, the transformer copper loss and the rectifier diodes conduction loss can be decreased. The output capacitor is made of two series capacitors which reduces the peak reverse voltage of the rectifier diodes. The circuit has no output inductor and few semiconductor elements, such that the adopted circuit has a simpler structure, a lower cost and is suitable for high power density applications. A detailed analysis and the design of this new converter are described. A prototype converter has been implemented and experimental results have been recorded with an ac input voltage of 85-135Vrms, an output voltage of 12V and an output current of 16A.

The Ballast for HID Lamps of Preventing the Overvoltage with a Long Distance Resonant Ignition (원거리 공진 기동시 과전압 방지 HID 안정기)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.1
    • /
    • pp.94-102
    • /
    • 2015
  • The electronic ballast for HID lamps needs to ignite lamps even though the length from the ballast to lamp is far away. Therefore, it needs to do the research on a resonant ignition to turn on the HID lamps because the reduction of ignition voltage is not much depending on the distance. However, the parasitic capacitance is increased depending the length of the cable, and it affects the resonant frequency. The ignitor voltage can be increased drastically under the resonant ignition through frequency sweep, and it is the main reason of blowing up. Therefore, the clamping diode is proposed to suppress the voltage of the primary winding during resonant ignition.

Constant Frequency Adjustable Power Active Voltage Clamped Soft Switching High Frequency Inverter using The 4th-Generation Trench-Gate IGBTs

  • Miyauchi T.;Hirota I.;Omori H.;Terai H.;Abdullah Al Mamun;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.236-241
    • /
    • 2001
  • This paper presents a novel prototype of active voltage-clamping capacitor-assisted edge resonant soft switching PWM inverter operating at a constant frequency variable power (VPCF) regulation scheme, which is suitable for consumer high-power induction-heating cooking appliances. New generation IGBT with a trench gate is particularly improved in order to reduce conduction loss due to its lowered saturation voltage characteristics. The soft switching load resonant and quasi-resonant inverter designed distinctively using the latest IGBTs is evaluated from an experimental point of view.

  • PDF