• Title/Summary/Keyword: clamp

Search Result 1,112, Processing Time 0.025 seconds

Decreased inward rectifier and voltage-gated K+ currents of the right septal coronary artery smooth muscle cells in pulmonary arterial hypertensive rats

  • Kim, Sung Eun;Yin, Ming Zhe;Kim, Hae Jin;Vorn, Rany;Yoo, Hae Young;Kim, Sung Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.111-119
    • /
    • 2020
  • In vascular smooth muscle, K+ channels, such as voltage-gated K+ channels (Kv), inward-rectifier K+ channels (Kir), and big-conductance Ca2+-activated K+ channels (BKCa), establish a hyperpolarized membrane potential and counterbalance the depolarizing vasoactive stimuli. Additionally, Kir mediates endothelium-dependent hyperpolarization and the active hyperemia response in various vessels, including the coronary artery. Pulmonary arterial hypertension (PAH) induces right ventricular hypertrophy (RVH), thereby elevating the risk of ischemia and right heart failure. Here, using the whole-cell patch-clamp technique, we compared Kv and Kir current densities (IKv and IKir) in the left (LCSMCs), right (RCSMCs), and septal branches of coronary smooth muscle cells (SCSMCs) from control and monocrotaline (MCT)-induced PAH rats exhibiting RVH. In control rats, (1) IKv was larger in RCSMCs than that in SCSMCs and LCSMCs, (2) IKv inactivation occurred at more negative voltages in SCSMCs than those in RCSMCs and LCSMCs, (3) IKir was smaller in SCSMCs than that in RCSMCs and LCSMCs, and (4) IBKCa did not differ between branches. Moreover, in PAH rats, IKir and IKv decreased in SCSMCs, but not in RCSMCs or LCSMCs, and IBKCa did not change in any of the branches. These results demonstrated that SCSMC-specific decreases in IKv and IKir occur in an MCT-induced PAH model, thereby offering insights into the potential pathophysiological implications of coronary blood flow regulation in right heart disease. Furthermore, the relatively smaller IKir in SCSMCs suggested a less effective vasodilatory response in the septal region to the moderate increase in extracellular K+ concentration under increased activity of the myocardium.

The Inhibitory Effects of Hydrogen Sulfide on Pacemaker Activity of Interstitial Cells of Cajal from Mouse Small Intestine

  • Parajuli, Shankar Prasad;Choi, Seok;Lee, Jun;Kim, Young-Dae;Park, Chan-Guk;Kim, Man-Yoo;Kim, Hyun-Il;Yeum, Cheol-Ho;Jun, Jae-Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.2
    • /
    • pp.83-89
    • /
    • 2010
  • In this study, we studied whether hydrogen sulfide ($H_2S$) has an effect on the pacemaker activity of interstitial cells of Cajal (ICC), in the small intestine of mice. The actions of $H_2S$ on pacemaker activity were investigated using whole-cell patch-clamp technique, intracellular $Ca^{2+}$ analysis at $30^{\circ}C$ and RT-PCR in cultured mouse intestinal ICC. Exogenously applied sodium hydrogen sulfide (NaHS), a donor of hydrogen sulfide, caused a slight tonic inward current on pacemaker activity in ICC at low concentrations (50 and $100{\mu}m$), but at high concentration ($500{\mu}m$ and 1 mM) it seemed to cause light tonic inward currents and then inhibited pacemaker amplitude and pacemaker frequency, and also an increase in the resting currents in the outward direction. Glibenclamide or other potassium channel blockers (TEA, $BaCl_2$, apamin or 4-aminopydirine) did not have an effect on NaHS-induced action in ICC. The exogenous application of carbonilcyanide p-triflouromethoxyphenylhydrazone (FCCP) and thapsigargin also inhibited the pacemaker activity of ICC as NaHS. Also, we found NaHS inhibited the spontaneous intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) oscillations in cultured ICC. In doing an RT-PCR experiment, we found that ICC enriched population lacked mRNA for both CSE and CBS, but was prominently detected in unsorted muscle. In conclusion, $H_2S$ inhibited the pacemaker activity of ICC by modulating intracellular $Ca^{2+}$. These results can serve as evidence of the physiological action of $H_2S$ as acting on the ICC in gastrointestinal (GI) motility.

Effect of 4-hexylresorcinol on Blood Coagulation and Healing of Injured Vessel in a Rat Model

  • Park, Yong-Tae;Park, Si-Yeok;Kim, Min-Keun;Kim, Seong-Gon;Park, Young-Wook;Kwon, Kwang-Jun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.5
    • /
    • pp.284-293
    • /
    • 2013
  • Purpose: For reconstruction of craniomaxillofacial defects caused by tumor, trauma, infection etc, free flap transplantation with microvascular surgery is a very useful method. Thrombus formation at the anastomosis site is the major cause of graft failure. 4-Hexylresorcinol (4-HR) is generally known as an antiseptic and antiparasitic agent. This study was conducted in order to evaluate the effect of 4-HR on blood coagulation in vitro. In addition, we investigated thrombus formation and endothelial repair of an injured vessel in an animal model. Methods: In the in vitro experiment, we compared blood coagulation time between the 4-HR treated group and normal blood. Thirty rats were used for in vivo animal experiments. After exposure of the right femoral vein, a micro vessel clamp was placed and the femoral vein was intentionally cut. Microvascular anastomosis was performed on all rats using 10-0 nylon under microscopy. The animals were divided into two groups. In the experimental group (n=15), 4-HR (250 mg/kg) mixed with olive oil (10 mL/kg) was administered per os daily. Animals in the control group (n=15) were given olive oil only. The animals were sacrificed at three days, seven days, and fourteen days after surgery and rat femoral vein samples were taken. Vascular patency and thrombus formation were investigated just before sacrifice. Histologic analysis was performed under a microscope. Results: Results of an in vitro blood coagulation test showed that coagulation time was delayed in the 4-HR treated group. The results obtained from an in vivo 4-HR administered rat model showed that the patency of all experimental groups was better at thirty minutes, seven days, and fourteen days after microvascular anastomosis than that of the control group at seven and fourteen days after anastomosis, and the amount of thrombus in the experimental groups was much less than that of the control group. Endothelial repair was observed in the histologic analysis. Conclusion: Findings of this study demonstrated that blood coagulation was delayed in the vitro 4-HR treated group. In addition, good vascular patency, anti-thrombotic effect, and repair of venous endothelial cells were observed in the vivo 4-HR administered rat group.

Contribution of Different Types of $Ca^{2+}$ channels to Catecholamine Secretion in Rat Adrenal Chromaffin Cells (부신수질 Chromaffin 세포의 $Ca^{2+}$ 통로유형이 카테콜아민 분비에 미치는 영향에 관한 정량적 연구)

  • Goo, Yang-Soak;Roh, Jin-A;Lee, Jung-Hwa;Chao, Eun-Jong
    • Progress in Medical Physics
    • /
    • v.8 no.1
    • /
    • pp.3-15
    • /
    • 1997
  • Adrenal chromaffin cells secrete catecholamine in response to acetylcholine. The secretory response has absolute requirement for extracellular calcium, indication that $Ca^{2+}$ influx through voltage dependent $Ca^{2+}$ channel (VDCC) is the primary trigger of the secretion cascade. Although the existence of various types of $Ca^{2+}$ channels has been explored using patch clamp technique in adrenal chromaffin cells, the contribution of different types of $Ca^{2+}$ channels to catecholamine secretion remains to be established. To investigate the quantative contribution of different types of $Ca^{2+}$ channels to cate-cholamine secretion, $Ca^{2+}$ current($I_{Ca}$) and the resultant membrane capacitance increment($\Delta{C}_{m}$) were simultaneoulsy measured. Software based phasor detector technique was used to monitor $\Delta{C}_{m}$. After blockade of L type VDCC with nicardipine (1$\mu$M), $I_{ca}$ was blocked to 43.85$\pm$6.72%(mean$\pm$SEM) of control and the resultant ㅿC$_{m}$ was reduced ot 30.10$\pm$16.44% of control. In the presence of nicardipine and $\omega$-conotoxin in GVIA(l$\mu$M), an N type VDCC antagonist, $I_{ca}$ was blocked to 11.62$\pm$2.96% of control and the resultant $\Delta{C}_{m}$ was reduced to 26.13$\pm$8.25% of control. Finally, in the presence of L, N, and P type $Ca^{2\pm}$ channel antagonists(nicardipine, $\omega$-Conotoxin GVIA, and $\omega$-agatoxin IVA, respectively), $I_{ca}$ and resultant $\Delta{C}_{m}$ were almost completely blocked. From the observation of parallel effects of $Ca^{2+}$ channel antagonists on $I_{ca}$ and $\Delta{C}_{m}$, it was concluded that L, N, and also P type $Ca^{2+}$ channels served and $Ca^{2+}$ source for exocytosis and no difference was observed in their efficiency to evoke exocytosis amost L, N, and P type $Ca^{2+}$ channels.

  • PDF

Differential Effects of Quercetin and Quercetin Glycosides on Human α7 Nicotinic Acetylcholine Receptor-Mediated Ion Currents

  • Lee, Byung-Hwan;Choi, Sun-Hye;Kim, Hyeon-Joong;Jung, Seok-Won;Hwang, Sung-Hee;Pyo, Mi-Kyung;Rhim, Hyewhon;Kim, Hyoung-Chun;Kim, Ho-Kyoung;Lee, Sang-Mok;Nah, Seung-Yeol
    • Biomolecules & Therapeutics
    • /
    • v.24 no.4
    • /
    • pp.410-417
    • /
    • 2016
  • Quercetin is a flavonoid usually found in fruits and vegetables. Aside from its antioxidative effects, quercetin, like other flavonoids, has a various neuropharmacological actions. Quercetin-3-O-rhamnoside (Rham1), quercetin-3-O-rutinoside (Rutin), and quercetin-3-(2(G)-rhamnosylrutinoside (Rham2) are mono-, di-, and tri-glycosylated forms of quercetin, respectively. In a previous study, we showed that quercetin can enhance ${\alpha}7$ nicotinic acetylcholine receptor (${\alpha}7$ nAChR)-mediated ion currents. However, the role of the carbohydrates attached to quercetin in the regulation of ${\alpha}7$ nAChR channel activity has not been determined. In the present study, we investigated the effects of quercetin glycosides on the acetylcholine induced peak inward current ($I_{ACh}$) in Xenopus oocytes expressing the ${\alpha}7$ nAChR. $I_{ACh}$ was measured with a two-electrode voltage clamp technique. In oocytes injected with ${\alpha}7$ nAChR copy RNA, quercetin enhanced $I_{ACh}$, whereas quercetin glycosides inhibited $I_{ACh}$. Quercetin glycosides mediated an inhibition of $I_{ACh}$, which increased when they were pre-applied and the inhibitory effects were concentration dependent. The order of $I_{ACh}$ inhibition by quercetin glycosides was Rutin${\geq}$Rham1>Rham2. Quercetin glycosides-mediated $I_{ACh}$ enhancement was not affected by ACh concentration and appeared voltage-independent. Furthermore, quercetin-mediated $I_{ACh}$ inhibition can be attenuated when quercetin is co-applied with Rham1 and Rutin, indicating that quercetin glycosides could interfere with quercetin-mediated ${\alpha}7$ nAChR regulation and that the number of carbohydrates in the quercetin glycoside plays a key role in the interruption of quercetin action. These results show that quercetin and quercetin glycosides regulate the ${\alpha}7$ nAChR in a differential manner.

Involvement of Ca2+ and K+ channels in the action of NO on gastric circular muscle (기니피그 유문부 윤상근의 자발적 수축 및 서파에 대한 nitric oxide의 억제적 작용과 Ca2+ 및 K+ 통로의 관련성)

  • Kim, Tae-wan;La, Jun-ho;Yang, Il-suk
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.4
    • /
    • pp.485-495
    • /
    • 2001
  • It was investigated whether $Ca^{2+}$ and $K^+$ channels were involved in the inhibitory action of nitric oxide (NO) on the contractile and slow wave activity of guinea pig gastric antral circular muscle. The gastric antral circular muscle showed spontaneous phasic contraction and slow wave. NO donors, 3-morpholinosydnonimine hydrochloride (SIN-1, $0.01{\sim}100{\mu}M$) and S-nitroso-L-cysteine (CysNO, $0.001{\sim}10{\mu}M$), reduced not only the amplitude of phasic contraction but also that of slow wave in a concentration-dependent manner. Both the perfusion of $Ca^{2+}$-free solution and the administration of $Ni^{2+}$, a nonselective $Ca^{2+}$ channel blocker, reduced the phasic contraction as well as the amplitude and frequency of the slow wave. The effects of these treatments were similar to those of NO donors. Nifedipine ($10{\mu}M$), a specific L-type $Ca^{2+}$ channel blocker, abolished the phasic contraction and remarkably reduced the plateau of slow wave but had no profound effect on the upstroke of slow wave. In the whole-cell patch clamp mode, CysNO shifted the steady-state activation curve for L-type $Ca^{2+}$ current to the right and the steady-state inactivation curve to the left. Pretreatment of various $K^+$ channel blockers such as tetraethylammonium (1 mM), 4-aminopyridine (0.5 mM), glibenclamide (10 mM), apamin ($0.1{\mu}M$), and iberiotoxin ($0.1{\mu}M$) did not affect the inhibitory action of SIN-1. These results suggest that NO donors suppress mechanical and electrical activity of guinea pig gastric antral circular muscle by inhibition of L-type $Ca^{2+}$ channel rather than by activation of $K^+$ channels.

  • PDF

The Effect of Additives in the Cardioplegic Solution on the Recovery of Myocardium, Compariosn Among Albumin, Mannitol, and Glucose (심마비용액의 삼투압을 유지하기위한 첨가 물질들의 차이가 심근보호에 미치는 영향)

  • Kim, Eun-Gi;Lee, Jong-Guk;Lee, Sang-Heon
    • Journal of Chest Surgery
    • /
    • v.24 no.11
    • /
    • pp.1058-1067
    • /
    • 1991
  • High potassium cardioplegia is a widely accepted procedure to enhance myocardial protection from ischemic injuries associated with open heart surgery. Maintaining optimum osmolarity of the cardioplegic solution is one of the required conditions for an ideal cardioplegic solution Albumin is an frequently added component for maintaining optimum osmolarity of clinically used cardioplegic solutions. But the source of albumin is human blood so that the supply is limited and the cost of manufacturing is relatively high. Recently there are moves to minimized the use of blood product for fear of blood-associated infections or immunological disorders. In this experiment, we substituted mannitol or glucose for albumin added to the cardioplegic solution which has been used at the Wonju Medical College, To determine whether addition of mannitol or glucose instead of albumin in the cardioplegic solution can produce satisfactory myocardial protection during ischemia, three different groups of isolated rat heart perfused by modified Langendorff technique were studied. Wonju Cardioplegic Solution was selected as a standard high potassium[18mEq/L of K+] cardioplegic solution. Three kinds of cardioplegic solution were made by modifying the composition maintaining the same osmolarity[339$\pm$1mOsm/Kg] Isolated rat heart were perfused initially with retrograde nonworking mode and then changed to working mode. After measuring the heart rate, systolic aortic pressure, aortic flow, coronary flow, ischemic arrest by aorta cross clamp and cardioplegia was made maintaining the temperature of water jacket at 10oC. The heart was rewarmed and reperfused after 60min of ischemic arrest with intermittent cardioplegia at the 30min interval. The time to return of heart beat and the time required to get. Regular heart beat were observed after reperfusion. The recovery rate of the functional variables-heart rate, systolic aortic pressure, aortic flow, coronary flow and cardiac output were calculated and compared among the three groups of different cardioplegia-albumin, mannitol, and glucose. The wet weight and dry weight was measured and the water content of the heart as figured out for comparison. The time to return of heart beat was fastest in the albumin group, The functional recovery rates were best in the albumin group also. In the above conditions, albumin was the best additive to the cardioplegic solution compared to the mannitol or glucose.

  • PDF

EFFECT OF LOW - POWER LASER IRRADIATION ON PAIN RESPONSE (저출력 레이저조사가 동통반응에 미치는 영향)

  • Kim, Sung-Kyo;Yoon, Soo-Han;Lee, Jong-Heun
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.2
    • /
    • pp.85-98
    • /
    • 1991
  • The aim of this study was to investigate the effect of low - power laser used in the medical field for various purposes to suppress pain responses evoked by noxious electrical or mechanical stimuli. After both inferior alveolar nerves and the left anterior digastric muscle of cats under general anesthesia were exposed, a recording electrode for the jaw opening reflex was inserted into the anterior digastric muscle. The right inferior alveolar nerve was dissected under a surgical microscope until the response of the functional single nerve could be evoked by the electrical stimulation of the dental pulp or oral mucosa. The electrical stimulus was applied with a rectangular pulse of 10 ms duration for measuring the threshold intensity of a single nerve fiber in the inferior alveolar nerve which responds to stimulation of dental pulp and oral mucosa. Then a pulse of 1 ms duration was applied for determination of conduction velocity. A noxious mechanical stimulus to the oral mucosa was applied by clamping the receptive field with an arterial clamp. The Ga-As diodide laser(wave length, 904 nm ; frequency, 1,000 Hz) was irradiated to the prepared tooth cavity, inferior alveolar nerve and oral mucosa as a pulse wave of 2 mW for 6 minutes. This was followed by a continuous wave of 15 mW for 3 minutes. The action potential of the nerve and EMG of the digastric muscle evoked by the noxious electrical stimulus and nerve response to noxious mechanical stimulus were compared at intervals of before, immediately after, and at 5, 10, 20, 40, 60 minutes after laser irradiation. The results were as follows: The conduction velocity of the intrapulpal $A{\delta}$- nerve fiber recorded from the inferior alveolar nerve before irradiation had a mean value of $6.68{\pm}2.07m/sec$. The laser irradiation did not affect the conduction velocity of the AS - nerve fiber and did not change the threshold intensity or amplitude of the action potential either. The EMG of the digastric muscle evoked by noxious electrical stimulation to the tooth was not changed by the laser irradiation, whether in latency, threshold intensity or amplitude. The laser irradiated to the receptive field of the oral mucosa which was subjected to noxious stimuli did not affect the amplitude of the action potential or the frequency either.

  • PDF

Relationship Between Interleukin-6 Production and Inflammatory Response during Cardiopulmonary Bypass (체외순환기 인터루킨-6의 생성과 염증반응간의 상관관계에 관한 연구)

  • 박광훈;최석철;한일용;최국렬;최강주;조광현
    • Journal of Chest Surgery
    • /
    • v.33 no.5
    • /
    • pp.407-418
    • /
    • 2000
  • Background: With open heart surgery(OHS), it has been recognized that many postoperative complications and postperfusion syndrome are associated with the activations of complements and leulocytes. Recently, some investigators also demonstrated that interlukin-6(IL-6) linked highly with postperfusion syndrome. The puropose of this study was to investigate the sequential changes of the IL-6 and to clarify each IL-6 relationship to the complements(C3, C4) and inflammatory response following cardiopulmonary bypass(CPB). Material and Method: To determine serum levels of IL-6, complements, leukocytes, and biochemistric markers of liver and renal function, blood samples were taken from th radial artery in 30 adult patients undergoing OHS with CPB. Result: Serum IL-6 levels incrased significantly at 10 minutes after CPB-on(CPB-10) in comparison with the control levels and reached the peak at CPB-off(p<0.05). Serum complement levels declined rapidly at CPB-10 and remained at the lower levels during CPB(p<0.01). Sequential changes of IL-6 levels had positive correlations with the changes of total leukocytes and neutrophil fractions(p<0.05), but had negative correlations with lymphocyte fractions(p<0.05). Changes of C3 related postively to monocyte fractions(p<0.05). Postoperative levels of total protein and albumin, decreased significantly in comparison with the control levels(p<0.01), while the postoperative levels of AST(aspartate transaminase) and bilirubin increased (p<0.01). At CPB-off, IL-6 levels had negative correlations with total protein and albumin levels(r=-0.60, -0.47 respectively, p<0.05), whereas C3 levels had positive correlations with albumin levels(r=0.40, p<0.05). IL-6 levels, as well as neutrophil fractions, had positive correlations with aortic clamp time(ACT) and total bypass time(TBT) (IL-6; r=0.82, 0.79 respectively, neutrophil fractions; r=0.50, 0.56 respectively, p<0.05), wheres lymphocyte frations and albumin levels had negative correlations whith ACT and TBT(lymphocyte fractions; r=-0.52, -0.58 respectively, albumin; r=-0.58, -0.55 respectively, p<0.05). Conclusion: These data showed that elevated production of serum IL-6 during CPB may play a pivotal role in systemic inflammatory responses and prologed CPB period may be assosiated with more sever postperfusion syndromes.

  • PDF

Morphological Characteristics of Artificially Cultivated Dictyophora echinovolvata (인공재배한 흰돌기망태버섯(Dictyophora echinovolvata)의 형태적 특징)

  • Cheong, Jong-Chun;Seok, Soon-Ja;Jang, Kab-Yeul;Park, Jeong-Sik;Kim, Yang-Sup;Chung, Bong-Koo
    • The Korean Journal of Mycology
    • /
    • v.30 no.2
    • /
    • pp.73-77
    • /
    • 2002
  • This study was conducted to investigate morphological characteristics of veiled lady mushroom (Dictyophora sp.). Morphological observation of mycelium showed the presence of chlamydospore-like swelling cells, and typical mycelial champ connections. Fruiting body of the veiled lady mushroom consists of cap, velum, stipe, and vulva. Oval-shaped eggs were surrounded by exodermis, gelatin layers and endodermis, and the fruiting bodies remained inside volva as liquid gelatin layer. Dark green spore layer was formed at the top of cap. The surface eggs in the cultivated veiled lady mushroom was covered with white needle-shaped mycelial projection that was oval in shape. The velum of fruiting body stretched down to the top of volva. The net was regularly shaped, and smelled like fragrance with chestnut flower. The strain KACC 50650 was identified as Dictyophora echinovolvata based on the morphology of eggs and fruiting bodies, and named as Huin-Dol-Gi-Mang-Tae mushroom in Korean.