• Title/Summary/Keyword: clamp

Search Result 1,110, Processing Time 0.026 seconds

Characterization of Acetylcholine-induced Currents in Male Rat Pelvic Ganglion Neurons

  • Park, Joong-Hyun;Park, Kyu-Sang;Cha, Seung-Kyu;Lee, Keon-Il;Kim, Min-Jung;Park, Jong-Yeon;Kong, In-Deok;Lee, Joong-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.4
    • /
    • pp.219-225
    • /
    • 2004
  • The pelvic ganglia provide autonomic innervations to the various urogenital organs, such as the urinary bladder, prostate, and penis. It is well established that both sympathetic and parasympathetic synaptic transmissions in autonomic ganglia are mediated mainly by acetylcholine (ACh). Until now, however, the properties of ACh-induced currents and its receptors in pelvic ganglia have not clearly been elucidated. In the present study, biophysical characteristics and molecular nature of nicotinic acetylcholine receptors (nAChRs) were studied in sympathetic and parasympathetic major pelvic ganglion (MPG) neurons. MPG neurons isolated from male rat were enzymatically dissociated, and ionic currents were recorded by using the whole cell variant patch clamp technique. Total RNA from MPG neuron was prepared, and RT-PCR analysis was performed with specific primers for subunits of nAChRs. ACh dose-dependently elicited fast inward currents in both sympathetic and parasympathetic MPG neurons $(EC_{50};\;41.4\;{\mu}M\;and\;64.0\;{\mu}M,\;respectively)$. ACh-induced currents showed a strong inward rectification with a reversal potential near 0 mV in current-voltage relationship. Pharmacologically, mecamylamine as a selective antagonist for ${\alpha}3{\beta}4$ nAChR potently inhibited the ACh-induced currents in sympathetic and parasympathetic neurons $(IC_{50};\;0.53\;{\mu}M\;and\;0.22\;{\mu}M,\;respectively)$. Conversely, ${\alpha}-bungarotoxin$, ${\alpha}-methyllycaconitine$, and $dihydro-{\beta}-erythroidine$, which are known as potent and sensitive blockers for ${\alpha}7$ or ${\alpha}4{\beta}2$ nAChRs, below micromolar concentrations showed negligible effect. RT-PCR analysis revealed that ${\alpha}3$ and ${\beta}4$ subunits were predominantly expressed in MPG neurons. We suggest that MPG neurons have nAChRs containing ${\alpha}3$ and ${\beta}4$ subunits, and that their activation induces fast inward currents, possibly mediating the excitatory synaptic transmission in pelvic autonomic ganglia.

Inhibitory Effects of Ginsenoside Metabolites, Compound K and Protopanaxatriol, on $GABA_C$ Receptor-Mediated Ion Currents

  • Lee, Byung-Hwan;Hwang, Sung-Hee;Choi, Sun-Hye;Kim, Hyeon-Joong;Lee, Joon-Hee;Lee, Sang-Mok;Ahn, Yun Gyong;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.127-132
    • /
    • 2013
  • Ginsenosides, one of the active ingredients of Panax ginseng, show various pharmacological and physiological effects, and they are converted into compound K (CK) or protopanaxatriol (M4) by intestinal microorganisms. CK is a metabolite derived from protopanaxadiol (PD) ginsenosides, whereas M4 is a metabolite derived from protopanaxatriol (PT) ginsenosides. The ${\gamma}$-aminobutyric acid $receptor_C$ ($GABA_C$) is primarily expressed in retinal bipolar cells and several regions of the brain. However, little is known of the effects of ginsenoside metabolites on $GABA_C$ receptor channel activity. In the present study, we examined the effects of CK and M4 on the activity of human recombinant $GABA_C$ receptor (${\rho}$ 1) channels expressed in Xenopus oocytes by using a 2-electrode voltage clamp technique. In oocytes expressing $GABA_C$ receptor cRNA, we found that CK or M4 alone had no effect in oocytes. However, co-application of either CK or M4 with GABA inhibited the GABA-induced inward peak current ($I_{GABA}$). Interestingly, pre-application of M4 inhibited $I_{GABA}$ more potently than CK in a dose- dependent and reversible manner. The half-inhibitory concentration ($IC_{50}$) values of CK and M4 were $52.1{\pm}2.3$ and $45.7{\pm}3.9{\mu}M$, respectively. Inhibition of $I_{GABA}$ by CK and M4 was voltage-independent and non-competitive. This study implies that ginsenoside metabolites may regulate $GABA_C$ receptor channel activity in the brain, including in the eyes.

Oxytocin produces thermal analgesia via vasopressin-1a receptor by modulating TRPV1 and potassium conductance in the dorsal root ganglion neurons

  • Han, Rafael Taeho;Kim, Han-Byul;Kim, Young-Beom;Choi, Kyungmin;Park, Gi Yeon;Lee, Pa Reum;Lee, JaeHee;Kim, Hye young;Park, Chul-Kyu;Kang, Youngnam;Oh, Seog Bae;Na, Heung Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.173-182
    • /
    • 2018
  • Recent studies have provided several lines of evidence that peripheral administration of oxytocin induces analgesia in human and rodents. However, the exact underlying mechanism of analgesia still remains elusive. In the present study, we aimed to identify which receptor could mediate the analgesic effect of intraperitoneal injection of oxytocin and its cellular mechanisms in thermal pain behavior. We found that oxytocin-induced analgesia could be reversed by $d(CH_2)_5[Tyr(Me)^2,Dab^5]$ AVP, a vasopressin-1a (V1a) receptor antagonist, but not by $desGly-NH_2-d(CH_2)_5[D-Tyr^2,Thr^4]OVT$, an oxytocin receptor antagonist. Single cell RT-PCR analysis revealed that V1a receptor, compared to oxytocin, vasopressin-1b and vasopressin-2 receptors, was more profoundly expressed in dorsal root ganglion (DRG) neurons and the expression of V1a receptor was predominant in transient receptor potential vanilloid 1 (TRPV1)-expressing DRG neurons. Fura-2 based calcium imaging experiments showed that capsaicin-induced calcium transient was significantly inhibited by oxytocin and that such inhibition was reversed by V1a receptor antagonist. Additionally, whole cell patch clamp recording demonstrated that oxytocin significantly increased potassium conductance via V1a receptor in DRG neurons. Taken together, our findings suggest that analgesic effects produced by peripheral administration of oxytocin were attributable to the activation of V1a receptor, resulting in reduction of TRPV1 activity and enhancement of potassium conductance in DRG neurons.

Functional expression of TREK1 channel in human bone marrow and human umbilical cord vein-derived mesenchymal stem cells (사람의 골수와 제대정맥에서 유래된 중간엽 줄기세포에서 TREK1 통로의 기능적 발현)

  • Park, Kyoung Sun;Kim, Yangmi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1964-1971
    • /
    • 2015
  • Human bone marrow or human umbilical cord vein derived-mesenchymal stem cells (hBM-MSCs or hUC-MSCs) have known as a potentially useful cell type for clinical therapeutic applications. We investigated two-pore domain potassium (K2P) channels in these cells. K2P channels play a major role in setting the resting membrane potential in many cell types. Among them, TREK1 is targets of hydrogen, hypoxia, polyunsaturated fatty acids, antidepressant, and neurotransmitters. We investigated whether hBM-MSCs and hUC-MSCs express functional TREK1 channel using RT-PCR analysis and patch clamp technique. Potassium channel with a single channel conductance of 100 pS was found in hUC-MSCs and BM-MSCs and the channel was activated by membrane stretch (-5 mmHg ~ -15 mmHg), arachidonic acid ($10{\mu}M$) and intracellular acidosis (pH 6.0). These electrophysiological properties were similar to those of TREK1. Our results suggest that TREK1 is functionally present in hBM-MSCs and hUC-MSCs, where they contribute to its resting membrane potential.

[$Ca^{2+}-activated\;K^+$ Currents of Pancreatic Duct Cells in Guinea-pig

  • Lee, Han-Wook;Li, Jing Chao;Koo, Na-Youn;Piao, Zheng Gen;Hwang, Sung-Min;Han, Jae-Woong;Choi, Han-Saem;Lee, Jong-Heun;Kim, Joong-Soo;Park, Kyung-Pyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.6
    • /
    • pp.335-338
    • /
    • 2004
  • There are numerous studies on transepithelial transports in duct cells including $Cl^-$ and/or $HCO_3^-$. However, studies on transepithelial $K^+$ transport of normal duct cells in exocrine glands are scarce. In the present study, we examined the characteristics of $K^+$ currents in single duct cells isolated from guinea pig pancreas, using a whole-cell patch clamp technique. Both $Cl^-$ and $K^+$ conductance were found with KCI rich pipette solutions. When the bath solution was changed to low $Cl^-$, reversal potentials shifted to the negative side, $-75{\pm}4\;mV$, suggesting that this current is dominantly selective to $K^+$. We then characterized this outward rectifying $K^+$ current and examined its $Ca^{2+}$ dependency. The $K^+$ currents were activated by intracellular $Ca^{2+}$. 100 nM or 500 nM $Ca^{2+}$ in pipette significantly (P<0.05) increased outward currents (currents were normalized, $76.8{\pm}7.9\;pA$, n=4 or $107.9{\pm}35.5\;pA$, n=6) at +100 mV membrane potential, compared to those with 0 nM $Ca^{2+}$ in pipette $(27.8{\pm}3.7\;pA,\;n=6)$. We next examined whether this $K^+$ current, recorded with 100 nM $Ca^{2+}$ in pipette, was inhibited by various inhibitors, including $Ba^{2+}$, TEA and iberiotoxin. The currents were inhibited by $40.4{\pm}%$ (n=3), $87.0{\pm}%$ (n=5) and $82.5{\pm}%$ (n=9) by 1 mM $Ba^{2+}$, 5 mM TEA and 100 nM iberiotoxin, respectively. Particularly, an almost complete inhibition of the current by 100 nM iberiotoxin further confirmed that this current was activated by intracellular $Ca^{2+}$. The $K^+$ current may play a role in secretory process, slnce recycling of $K^+$ is critical for the initiation and sustaining of $CI^-$ or $HCO_3^-$ secretion in these cells.

Oxidized Low-density Lipoprotein- and Lysophosphatidylcholine-induced $Ca^{2+}$ Mobilization in Human Endothelial Cells

  • Kim, Moon-Young;Liang, Guo-Hua;Kim, Ji-Aee;Choi, Soo-Seung;Choi, Shin-Ku;Suh, Suk-Hyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.1
    • /
    • pp.27-32
    • /
    • 2009
  • The effects of oxidized low-density lipoprotein(OxLDL) and its major lipid constituent lysophosphatidylcholine(LPC) on $Ca^{2+}$ entry were investigated in cultured human umbilical endothelial cells(HUVECs) using fura-2 fluorescence and patch-clamp methods. OxLDL or LPC increased intracellular $Ca^{2+}$ concentration($[Ca^{2+}]_i$), and the increase of $[Ca^{2+}]_i$ by OxLDL or by LPC was inhibited by $La^{3+}$ or heparin. LPC failed to increase $[Ca^{2+}]_i$ in the presence of an antioxidant tempol. In addition, store-operated $Ca^{2+}$ entry(SOC), which was evoked by intracellular $Ca^{2+}$ store depletion in $Ca^{2+}$-free solution using the sarcoplasmic reticulum $Ca^{2+}$ pump blocker, 2, 5-di-t-butyl-l,4-benzohydroquinone(BHQ), was further enhanced by OxLDL or by LPC. Increased SOC by OxLDL or by LPC was inhibited by U73122. In voltage-clamped cells, OxLDL or LPC increased $[Ca^{2+}]_i$ and simultaneously activated non-selective cation(NSC) currents. LPC-induced NSC currents were inhibited by 2-APB, $La^{3+}$ or U73122, and NSC currents were not activated by LPC in the presence of tempol. Furthermore, in voltage-clamped HUVECs, OxLDL enhanced SOC and evoked outward currents simultaneously. Clamping intracellular $Ca^{2+}$ to 1 ${\mu}M$ activated large-conductance $Ca^{2+}$-activated $K^+(BK_{ca})$ current spontaneously, and this activated $BK_{ca}$ current was further enhanced by OxLDL or by LPC. From these results, we concluded that OxLDL or its main component LPC activates $Ca^{2+}$-permeable $Ca^{2+}$-activated NSC current and $BK_{ca}$ current simultaneously, thereby increasing SOC.

Multiple Residues in the P-Region and M2 of Murine Kir 2.1 Regulate Blockage by External $Ba^{2+}$

  • Lee, Young-Mee;Thompson, Gareth A.;Ashmole, Ian;Leyland, Mark;So, In-Suk;Stanfield, Peter R.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.1
    • /
    • pp.61-70
    • /
    • 2009
  • We have examined the effects of certain mutations of the selectivity filter and of the membrane helix M2 on $Ba^{2+}$ blockage of the inward rectifier potassium channel, Kir 2.1. We expressed mutant and wild type murine Kir 2.1 in Chinese hamster ovary(CHO) cells and used the whole cell patch-clamp technique to record $K^+$ currents in the absence and presence of externally applied $Ba^{2+}$. Wild type Kir2.1 was blocked by externally applied $Ba^{2+}$ in a voltage and concentration dependent manner. Mutants of Y145 in the selectivity filter showed little change in the kinetics of $Ba^{2+}$ blockage. The estimated $K_d(0)$ was 108 ${\mu}M$ for Kir2.1 wild type, 124 ${\mu}M$ for a concatameric WT-Y145V dimer, 109 ${\mu}M$ for a WT-Y145L dimer, and 267 ${\mu}M$ for Y145F. Mutant channels T141A and S165L exhibit a reduced affinity together with a large reduction in the rate of blockage. In S165L, blockage proceeds with a double exponential time course, suggestive of more than one blocking site. The double mutation T141A/S165L dramatically reduced affinity for $Ba^{2+}$, also showing two components with very different time courses. Mutants D172K and D172R(lining the central, aqueous cavity of the channel) showed both a decreased affinity to $Ba^{2+}$ and a decrease in the on transition rate constant(${\kappa}_{on}$). These results imply that residues stabilising the cytoplasmic end of the selectivity filter(T141, S165) and in the central cavity(D172) are major determinants of high affinity $Ba^{2+}$ blockage in Kir 2.1.

Diclofenac, a Non-steroidal Anti-inflammatory Drug, Inhibits L-type $Ca^{2+}$ Channels in Neonatal Rat Ventricular Cardiomyocytes

  • Yarishkin, Oleg V.;Hwang, Eun-Mi;Kim, Dong-Gyu;Yoo, Jae-Cheal;Kang, Sang-Soo;Kim, Deok-Ryoung;Shin, Jae-Hee-Jung;Chung, Hye-Joo;Jeong, Ho-Sang;Kang, Da-Won;Han, Jae-Hee;Park, Jae-Yong;Hong, Seong-Geun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.437-442
    • /
    • 2009
  • A non-steroidal anti-inflammatory drug (NSAID) has many adverse effects including cardiovascular (CV) risk. Diclofenac among the nonselective NSAIDs has the highest CV risk such as congestive heart failure, which resulted commonly from the impaired cardiac pumping due to a disrupted excitationcontraction (E-C) coupling. We investigated the effects of diclofenac on the L-type calcium channels which are essential to the E-C coupling at the level of single ventricular myocytes isolated from neonatal rat heart, using the whole-cell voltage-clamp technique. Only diclofenac of three NSAIDs, including naproxen and ibuprofen, significantly reduced inward whole cell currents. At concentrations higher than $3\;{\mu}M$, diclofenac inhibited reversibly the $Na^+$ current and did irreversibly the L-type $Ca^{2+}$ channels-mediated inward current $(IC_{50}=12.89\pm0.43\;{\mu}M)$ in a dose-dependent manner. However, nifedipine, a well-known L-type channel blocker, effectively inhibited the L-type $Ca^{2+}$ currents but not the $Na^+$ current. Our finding may explain that diclofenac causes the CV risk by the inhibition of L-type $Ca^{2+}$ channel, leading to the impairment of E-C coupling in cardiac myocytes.

Interorder Protoplast Fusion between Pleurotus ostreatus and Ganoderma applanatum (느타리버섯과 잔나비걸상버섯과의 이목간(異目間) 원형질체(原形質體) 융합(融合))

  • Yoo, Young-Bok;Song, Moon-Tae;Go, Seung-Joo;You, Chang-Hyun;Cha, Dong-Yeul;Park, Yong-Hwan;Chang, Kwon-Yawl
    • The Korean Journal of Mycology
    • /
    • v.17 no.3
    • /
    • pp.119-123
    • /
    • 1989
  • Interorder heterokaryons were obtained by polyethylene glycol induced fusion of protoplasts from auxotrophic mutants of Pleurotus ostreatus in agaricales and Ganoderma applanaturm in aphyllophorales. When transferred to MMM plates, all fusion colonies exhibited an extremely growth rate. During three times subcultivation on MCM the growth rate of fusants showed faster little by little. Seventy-five % fusion products of potoplasts showed mixed morphologies between those of P. ostreatus and G. applannatum in the first subcultivation on MCM and MGM. The phenotype of these fusants changed similar those of P. osteatus type after three times subcultivation on MCM. However, phenotype of 25% stable strains did not change on subcultivation. Hyphae of all fusion products did not form true clamp connection. All these types did not produce primordia. A comparrison of interorder somatic hybrids was made using isozyme analysis of esterase, malate dehydrogenase and peroxidase. In most cases the enzyme patterns of G. applanatum were not distinct, however, fusant showed non-parental bands.

  • PDF

Characteristics of the inward current and its changes following fertilization in hamster eggs (햄스터 난자에서 관찰되는 내향전류의 성상과 수정후의 변화)

  • Han, Jae-hee;Hong, Seong-geun
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.2
    • /
    • pp.280-289
    • /
    • 1998
  • Voltage-sensitive ion channels contribute to establishment of the cell excitablity and the generation of the cellular function. At hamster oocytes in the primitive stage during developing process, an inward current elicited by voltage pulses was found to be carried mainly by $Ca^{2+}$. Even at present, $Ca^{2+}$ channels serve as the most probable route to pass this inward current but there is no evidence of the presence of this channels in eggs. To date, both the characteristic properties and the physiological role in the early stage of development remain unclear. Here we examined the characteristic properties of the inward current and changes in this currents at unfertilized oocytes, fertilized zygotes and two-cell embryos using whole-cell voltage clamp technique. The inward current carried reportedly by $Ca^{2+}$ was remained following removing external $Ca^{2+}$ but completely abolished by further replacement of impermeants such as tetramethylammonium ion ($TMA^+$) or $choline^+$ instead of $[Na^+]_0$. Tetrodotoxin did not affect on this inward current remained at $[Ca^{2+}]_0$-free condition. Removal of $Na^+$ ion out of the experimental solution clearly decreased the current. After adding 2mM $Ca^{2+}$ to the $Na^+$-free media, the inward current was restored. Interestingly, this current carried by either $Ca^{2+}$ or $Na^+$ was decreased by the reduction of intracellular $Cl^-$ concentration, or by $Cl^-$ channel blockers such as niflumic acid, DIDS and SITS. When $Cl^-$ concentration was lowered without changes in other ionic components, this inward current was reduced. At fertilized oocytes and two-cell embryos, the inward current carried by $Ca^{2+}$ and $Na^+$ was severely reduced. Also $Cl^-$ component could not be observed. From these results, the inward current is composed of $Ca^{2+}$, $Na^+$ and $Cl^-$ component, suggesting that the channel carrying this inward current is not selective specifically to $Ca^{2+}$. During early stage of development, the voltage-sensitive ion current seems not to contribute essentially to the cell cleavage and differentiation. The loss of $Cl^-$ component after fertilization suggests that $Cl^-$ may play a role in maintaining the viability of unfertilized ova.

  • PDF