• Title/Summary/Keyword: claddings

Search Result 79, Processing Time 0.032 seconds

Mechanism of Environmentally-Induced Stress Corrosion Cracking of Zr-Alloys

  • Park, Sang Yoon;Kim, Jun Hwan;Choi, Byung Kwon;Jeong, Yong Hwan
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.170-176
    • /
    • 2007
  • Iodine-induced stress corrosion cracking (ISCC) properties and the associated ISCC process of Zircaloy-4 and an Nb-containing advanced nuclear fuel cladding were evaluated. An internal pressurization test with a pre-cracked specimen was performed with a stress-relieved (SR) or recrystallized (RX) microstructure at $350^{\circ}C$, in an iodine environment. The results showed that the $K_{ISCC}$ of the SR and RX Zircaloy-4 claddings were 3.3 and 4.8MPa\;m^{0.5}, respectively. And the crack propagation rate of the RX Zircaloy-4 was 10 times lower than that of the SR one. The chemical effect of iodine on the crack propagation rate was very high, which was increased $10^4$ times by iodine addition. Main factor affecting on the micro-crack nucleation was a pitting formation and its agglomeration along the grain boundary. However, this pitting formation on the grain-boundary was suppressed in the case of an Nb addition, which resulted in an increase of the ISCC resistance when compared to Zircaloy-4. Crack initiation and propagation mechanisms of fuel claddings were proposed by a grain boundary pitting model and a pitting assisted slip cleavage model and they showed reasonable results.

PROPERTIES OF ZR ALLOY CLADDING AFTER SIMULATED LOCA OXIDATION AND WATER QUENCHING

  • Kim, Hyun-Gil;Kim, Il-Hyun;Jung, Yang-Il;Park, Jeong-Yong;Jeong, Yong-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.193-202
    • /
    • 2010
  • In order to study the cladding properties of zirconium after a loss-of-coolant accident (LOCA)-simulation oxidation and water quenching test, commercial Zircaloy-4 and two kinds of HANA claddings were oxidized at temperatures ranging from $900^{\circ}C$ to $1250^{\circ}C$ and exposed for 300 s, and then cooled to $700^{\circ}C$ before quenching. Microstructural observations were made to evaluate the matrix characteristics with the chemical compositions after the LOCA-simulation test. Ring compression testing was then performed to compare the ductile behaviour of the HANA and Zircaloy-4 claddings. An X-ray diffraction (XRD) analysis was carried out for temperatures ranging from room temperature to $1250^{\circ}C$ for the oxide layer to verify the oxide crystal structure at each oxidation temperature.

The Effect of Hydrogen in the Nuclear Fuel Cladding on the Oxidation under High Temperature and High Pressure Steam (고압 수증기하 산화에서 핵연료 피복관내 수소효과 연구)

  • Jung, Yunmock;Jeong, Seonggi;Park, Kwangheon;Noh, Seonho
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • The characteristics of oxidation for the Zry-4 was measured in the $800^{\circ}C$ and high steam pressure (50 bar, 75 bar, 100 bar) conditions, using an apparatus for high pressure steam oxidation. The effect of accelerated oxidation by high-pressure steam was increased more than 60% in hydrogen-charged cladding than normal cladding. This difference between hydrogen charged claddings and normal claddings tends to be larger as the higher pressure. The accelerated oxidation effect of hydrogen charging cladding is regarded as the hydrogen on the metal layer affects the formation of the protective oxide layer. The creation of the sound monoclinic phase in Zry-4 oxidation influences reinforcement of corrosion-resistance of the oxide layer. The oxidation is estimated to be accelerated due to the creation of equiaxial type oxide film with lower corrosion resistance than that of columnar type oxide film. When tetragonal oxide film transformed into the monoclinic oxide film, surface energy of the new monoclinic phase reduced by hydrogen in the metal layer.

Evaluation of Hydrides Effects on Corrosion and Tensile Properties of Stress-relieved Zirconium Claddings (응력이완 열처리된 지르코늄 피복관의 부식 및 인장특성에 미치는 수소화물 영향 평가)

  • Bang, Je-Geon;Baek, Jong Hyuk;Lee, Myung Ho;Jeong, Yong Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.6
    • /
    • pp.356-364
    • /
    • 2004
  • The hydrides in cladding affect the corrosion and tensile properties. In this study corrosion and tensile properties were evaluated with varying the hydrogen concentration. The charged hydrogen contents were ranged from 200 to 1000 ppm. The corrosion rate in water and LiOH solution increases with the hydrogen concentration. The hydride did not affect the corrosion mechanism in the pre-transition region, but in the post-transition region the corrosion rate was accelerated. Cladding E contained higher Niobium content was slowly accelerated compared with other claddings. The yield and ultimate strengths were independent on the hydrogen content. However, the total elongation decreased gradually with increasing the hydrogen content. SEM observation of fracture surface showed that an average of depth of voids decreased with increasing the hydrogen content and small secondary crack are observed.

Structural Behavior Analysis of Polymer Lattice Reinforced 3D Printing Cementitious Cladding (폴리머 격자 보강재를 이용한 3D 프린팅 시멘트계 외장재의 구조 거동 분석)

  • Kim, Hak-Beom;Park, Min-Jae;Ju, Young K.
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.11
    • /
    • pp.3-10
    • /
    • 2018
  • Cladding that finishes the exterior of a building could enhance the value of the building, and shape control is an important factor. With the recent development of 3D printing, cementitious claddings were printed by 3D printer in China, U.S.A and elsewhere. On the other hand, the structural safety of the exterior panel should be examined, as casualties occur when the exterior panel fails due to typhoon or impact. Cement-based cladding is reinforced by wire mesh to improve safety. Introducing 3D printing composite system with polymer and cement, makes it possible to produce claddings fast and accurate. Prior to the development of 3D printing cementitious cladding, the major parameters influencing the optimal shape were identified based on structural performance. The wind load, joint, and bond behavior between polymer and cement were considered. Polymer laminate shape, order, and thickness were variables, and finite element analysis was performed.

Proposed Prediction of Corrosion Loss for Weathering Steel Cladding in KIHO region using Multi-variable Analysis (기호지방 건축용 내후성강 외장재의 다변량 해석을 통한 부식량 예측식 제안)

  • Chung, Kyung Soo;Lee, Jae Sung;Chung, Jin An;Lee, Sung Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.591-599
    • /
    • 2008
  • Weathering steel has been widely used in bridges and cladding materials due to its superior atmospheric corrosion resistance. Actually, weathering steel has often been used in Korea as cladding material. However, the performance of the weathering steel in claddings has not been fully monitored. We conducted a field study on the performance of weathering steels and measured the quantity of corrosion loss on the weathering steel claddings in Korea. Based on the measured corrosion loss and weather (environmental) data, the equation to predict corrosion loss of weathering steels was proposed by using environmental factors in KIHO region in Korea. The proposed equation predicted very well the real corrosion losses of KIHO region.