• Title/Summary/Keyword: civil structures

Search Result 8,862, Processing Time 0.027 seconds

Optimal distribution of metallic energy dissipation devices in multi-story buildings via local search heuristics

  • Zongjing, Li;Ganping, Shu;Zhen, Huang;Jing, Cao
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.419-430
    • /
    • 2022
  • The metallic energy dissipation device (EDD) has been widely accepted as a useful tool for passive control of buildings against earthquakes. The distribution of metallic EDDs in a multi-story building may have significant influence on its seismic performance, which can be greatly enhanced if the distribution scheme is properly designed. This paper addresses the optimal distribution problem in the aim of achieving a desired level of performance using the minimum number of metallic EDDs. Five local search heuristic algorithms are proposed to solve the problem. Four base structures are presented as numerical examples to verify the proposed algorithms. It is indicated that the performance of different algorithms may vary when applied in different situations. Based on the results of the numerical verification, the recommended guidelines are finally proposed for choosing the appropriate algorithm in different occasions.

Analyzing the mechano-bactericidal effect of nano-patterned surfaces by finite element method and verification with artificial neural networks

  • Ecren Uzun Yaylaci;Murat Yaylaci;Mehmet Emin Ozdemir;Merve Terzi;Sevval Ozturk
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.165-174
    • /
    • 2023
  • The study investigated the effect of geometric structures of nano-patterned surfaces, such as peak sharpness, height, width, aspect ratio, and spacing, on mechano-bactericidal properties. Here, in silico models were developed to explain surface interactions with Escherichia coli. Numerical solutions were performed based on the finite element method and verified by the artificial neural network method. An E. coli cell adhered to the nano surface formed elastic and creep deformation models, and the cells' maximum deformation, maximum stress, and maximum strain were calculated. The results determined that the increase in peak sharpness, aspect ratio, and spacing values increased the maximum deformation, maximum stress, and maximum strain on E. coli cell. In addition, the results showed that FEM and ANN methods were in good agreement with each other. This study proved that the geometrical structures of nano-patterned surfaces have an important role in the mechano-bactericidal effect.

Analysis of soft deformation limitation of base-isolated structures

  • Jinwei Jiang;Baoyang Yang
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • Isolation technology has been proven effective in reducing the seismic response of superstructures, where most of the deformation is concentrated in the isolation layer. However, in cases of earthquakes with intensities surpassing the fortification level of the area, or severe near-fault earthquakes, the isolation layer may experience excessive deformation, resulting in damage to the isolation bearings or collisions with the retaining wall or surrounding buildings. In this study, a finite element model using ABAQUS is established and compared with experimental test results to deeply investigate the influence of limit devices on the isolation layer and its response to the superstructure. The findings reveal that a larger limiter stiffness and a smaller reserved gap can achieve a more effective limiting effect. Nevertheless, a smaller reserved gap and a larger limiter stiffness may result in increased response of the superstructure. Therefore, rational selection of the reserved gap and limiter stiffness is crucial to reduce the acceleration response.

Effect of seismic torsional component on nonlinear behavior of reinforced concrete multi-story buildings

  • Abderrahmane Ouazir;Asma Hadjadj;Mansour Ouazir;Mustapha Boukendakji;Hatem Gasmi
    • Structural Engineering and Mechanics
    • /
    • v.91 no.4
    • /
    • pp.349-355
    • /
    • 2024
  • This paper investigates the influence of the torsional component of earthquake on the nonlinear structural behavior of reinforced concrete (RC) buildings. It also estimates the equivalent additional eccentricity that results from this component. For this purpose, we generate torsional accelerograms from translational ones and conduct nonlinear seismic analysis on both regular and irregular structures. The results show that the torsional component has a significant impact on the structural response, especially for irregular structures. The equivalent additional eccentricity of the cases studied was higher than 5% which is the value of accidental eccentricity suggested by many seismic codes.

Wind loads for high-solidity open-frame structures

  • Amoroso, Samuel D.;Levitan, Marc L.
    • Wind and Structures
    • /
    • v.14 no.1
    • /
    • pp.1-14
    • /
    • 2011
  • Open frame structures, such as those commonly found in industrial process facilities, are often densely occupied with process related equipment. This paper presents a method for estimating wind loads for high-solidity open frame structures that differs from current approaches, which accumulate wind load contributions from various individual structure components. The method considers the structure as a porous block of arbitrary plan dimension that is subject to wind from any direction. The proposed method compares favorably with wind tunnel test results for similar structures. The possibility of defining an upper bound force coefficient is also discussed.

Modelling of the effects of alkali-aggregate reaction in reinforced concrete structures

  • Pietruszczak, S.;Ushaksaraei, R.;Gocevski, V.
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.627-650
    • /
    • 2013
  • This paper deals with application of a non-linear continuum model for reinforced concrete affected by alkali-aggregate reaction (AAR) to analysis of some nuclear structures. The macroscopic behaviour of the material affected by AAR is described by incorporating a homogenization/averaging procedure. The formulation addresses the main stages of the deformation process, i.e., a homogeneous deformation mode as well as that involving localized deformation, associated with formation of macrocracks. The formulation is applied to examine the mechanical behaviour of some reinforced concrete structures in nuclear power facilities located in Quebec (Canada). First, a containment structure is analyzed subjected to 45 years of continuing AAR. Later, an inelastic analysis is carried out for the spent fuel pool taking into account the interaction with the adjacent jointed rock mass foundation. In the latter case, the structure is said to be subjected to continuing AAR that is followed by a seismic event.

A retrofitting method for torsionally sensitive buildings using evolutionary algorithms

  • Efstathakis, Nikos C.;Papanikolaou, Vassilis K.
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.309-319
    • /
    • 2017
  • A new method is suggested for the retrofitting of torsionally sensitive buildings. The main objective is to eliminate the torsional component from the first two natural modes of the structure by properly modifying its stiffness distribution via selective strengthening of its vertical elements. Due to the multi-parameter nature of this problem, state-of-art optimization schemes together with an ad-hoc software implementation were used for quantifying the required stiffness increase, determine the required retrofitting scheme and finally design and analyze the required composite sections for structural rehabilitation. The performance of the suggested method and its positive impact on the earthquake response of such structures is demonstrated through benchmark examples and applications on actual torsionally sensitive buildings.

Application of graded harmonic FE in the analysis of 2D-FGM axisymmetric structures

  • Karakas, Ali I.;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.473-494
    • /
    • 2015
  • A graded harmonic finite element formulation based on three-dimensional elasticity theory is developed for the structural analysis of 2D functionally graded axisymmetric structures. The mechanical properties of the axisymmetric solid structures composed of two different metals and ceramics are assumed to vary in radial and axial directions according to power law variations as a function of the volume fractions of the constituents. The material properties of the graded element are calculated at the integration points. Effects of material distribution profile on the static deformation, natural frequency and dynamic response analyses of particular axisymmetric solid structures are investigated by changing the power law exponents. It is observed that the displacements, stresses and natural frequencies are severely affected by the variation of axial and radial power law exponents. Good accuracy is obtained with fewer elements in the present study since Fourier series expansion eliminates the need of finite element mesh in circumferential direction and continuous material property distribution within the elements improves accuracy without refining the mesh size in axial and radial directions.